WASA Contractor Report 187206

AD-A250 562

TUBULAR COPPER THRUST CHAMBER DESIGN STUDY

PHAL REPORT

S ELECTE D MAY 1.9 1992

Profit's Wilding) Structurally Engines & Opece Propulsion P.O. Box 108800 Made Pelin Beach, FL 39410-8800

467 1552

this document has been approved for public release and sale; its distribution is widenlied.

Prepaired for Lawle Research Center United Contract No. NAS3-23858

National Aeronautics and Space Administration

92-13007

FOREWORD

This technical report presents the results of a Tubular Copper Thrust Chamber Design Study. The study was conducted by the Pratt & Whitney (P&W)/Government Engines & Space Propulsion (GESP) of the United Technologies Corporation (UTC) for the National Aeronautics and Space Administration, Lewis Research Center under Contract NAS3-23858, Task Order C.2.

The study was initiated in October 1989 and completed in June 1990. Mr. John Kazaroff was the NASA Task Order Manager. The effort at P&W was carried out under Mr. James R. Brown, Program Manager, and Mr. Arthur I. Masters, Engineering Manager. Other individuals providing significant contributions in the preparation of the report were Donald E. Galler and Scott Chesla — Cycle Performance; James R. Black and Aaron R. Fierstein — Heat Transfer; Tim Ehlers — Mechanical Design; and Charles Ruby — Structural Analysis. Mr. G. Paul Richter was the orbit transfer vehicle (OTV) Program Manager.

Accesi	on For	1											
DTIC	ounced	<u>j</u>											
By Distribution (
Α	vailability	Cades											
Dist	Avail one Specie		-										
A-1													

TABLE OF CONTENTS

Section		Page
I	INTRODUCTION	1
	A. Background	1
	B. Study Requirements	1
	C. Thermal Analysis Results	2
	D. Preliminary Design Summary	3
II	STUDY PROCEDURES	5
	A. Optimization Methodology	5
	1. Description of Methodology	5
	2. Design Selector	6
	3. Regression Analysis Method	7
	4. Selection of Study Variables	7
	B. Thermal Analysis	12
		19
	1. Thermal Data	19
	2. Expander Engine Design Cycle Deck	19
	3. Salit Expander Cycle Analysis	19
	4. Juli Expander Cycle Analysis	21
III	THERMAL ANALYSIS AND SENSITIVITY STUDY RESULTS	24
	A. Split Expander Cycle Optimization	24
	B. Full Expander With Regenerator Cycle Optimization	24
	C. Variation Studies	24
	1. Increasing Heat Flux Enhancement	32
		33
	2. Increasing Jacket Bypass Flow	
	3. Increasing the Number of Tubes	33
	4. Optimizing Chamber Tube Geometry	33
	5. Increasing the Maximum Allowable Chamber Hot-Wall	
	Temperature	37
	6. Using A Four-Stage Pump	37
IV	TUBULAR CHAMBER PRELIMINARY DESIGN	47
	A. Thermal Analysis	47
	B. Mechanical Design	53
	C. Structural and Life Analysis	57
	1. Jacket Buckling Analysis	58
	2. Liner Life Analysis	58
	3. Milled Chamber Life Comparison	62
V	RECOMMENDATIONS	64
	REFERENCES	65
	APPENDIX — Detailed Cycle Data	A-1

LIST OF ILLUSTRATIONS

Figure		Page
1	Advanced Expander Test Bed Copper Tubular Combustion Chamber	4
2	Isometric View of Three-Variable Central Composite Design Pattern	6
3	Schematic of Five-Variable CCD Pattern	8
4	Preliminary Advanced Thrust Chamber Optimization for $Tc = 110^{\circ}R$.	9
5	Preliminary Advanced Thrust Chamber Optimization for Tc = 250°R .	10
6	Preliminary Advanced Thrust Chamber Optimization for $Tc = 400$ °R .	11
7	Split Expander Chamber Optimization	20
8	Full Expander With Regenerator Chamber Optimization	22
9	Optimized Split Expander	25
10	Effect of Tube Aspect Ratio and Chamber Contraction Ratio on Achievable Chamber Pressure — Split Expander Cycle	26
11	Effect of Turbine Pressure Ratio and Number of Tubes on Achievable Chamber Pressure — Split Expander Cycle	27
12	Effect of Turbine Bypass Ratio and Chamber Length on Achievable Chamber Pressure — Split Expander Cycle	28
13	Optimized Full Expander With Regenerator	29
14	Effect of Aspect Ratio and Contraction Ratio on Achievable Chamber Pressure — Full Expander Cycle with Regenerator	30
15	Effect of Turbine Pressure Ratio and Number of Tubes on Achievable Chamber Pressure — Full Expander Cycle with Regenerator	31
16	Effect of Regenerator Effectiveness and Chamber Length on Achievable Chamber Pressure — Full Expander Cycle with Regenerator	32
17	Split Expander — 35-Percent Jacket Bypass/30-Percent Enhancement .	34
18	Full Expander with Regenerator — 30-Percent Enhancement	35
19	Split Expander — 50-Percent Jacket Bypass/30-Percent Enhancement .	36
20	Effect of Jacket Bypass Flow on Achievable Chamber Pressure — Split Expander Cycle	37
21	Split Expander — 50-Percent Jacket Bypass/30-Percent Enhancement — 150 Tubes	38

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
22	Split Expander — 50-Percent Jacket Bypass/30-Percent Enhancement — Optimum Tube Geometry	39
23	Split Expander — 1560°R Hot-Wall Temperature Limit	40
24	Split Expander — 1660°R Hot-Wall Temperature Limit	41
25	Split Expander — 35-Percent Bypass/18-Percent Enhancement — Four-Stage Pump	43
26	Split Expander — 35-Percent Bypass/30-Percent Enhancement — Four-Stage Pump	44
27	Split Expander — 50-Percent Bypass/18-Percent Enhancement — Four-Stage Pump	45
28	Split Expander — 50-Percent Bypass/30-Percent Enhancement — Four-Stage Pump	46
29	Advanced Expander Test Bed Thermal Design Milled Chamber	48
30	Advanced Expander Test Bed Alternative Tubular Chamber Thermal Design — Variable Enhancement (Counterflow 120 Tubes)	49
31	Advanced Expander Test Bed Alternative Tubular Chamber Thermal Design — Variable Enhancement (Counterflow 140 Tubes)	50
32	Advanced Expander Test Bed Alternative Tubular Chamber Thermal Design — Constant 18-Percent Enhancement (Counterflow 140 Tubes)	51
33	Advanced Expander Test Bed Alternative Tubular Chamber Thermal Design — Constant 30-Percent Enhancement (Counterflow 140 Tubes)	52
34	Copper Tubular Combustion Chamber — Advanced Expander Test Bed Alternate Design	55
35	Coolant Exit (See View K on Figure 34)	57
36	Coolant Entrance Through Tube Outer Walls (See View F on Figure 34)	57
37	Advanced Expander Test Bed Tubular Chamber Structural Jacket Axial Load Distribution	58
38	Advanced Expander Test Bed Alternative Tube Chamber Coolant and Tube Temperature Profiles	59
39	Tube Isotherms 1.0 in. Upstream of Chamber Throat (Z=-1)	59

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
40	NASTRAN Two-Dimensional Structural Modes	60
41	Tube Tangential Deflection	61
42	Principal Stress Contour Plot	61
43	NASA-Z Low-Cycle Fatigue — Tube Chamber Versus Milled Chamber	62

LIST OF TABLES

Table		Page
1	Tubular Copper Thrust Chamber Recommended Design Parameters	2
2	Effect of Tubular Chamber Heat Transfer Enhancement on Upper Limit Chamber Pressure	3
3	Three- and Four-Stage Fuel Pump Comparison in the Split Expander Cycle	3
4	Comparison of Tubular and Milled Channel AETB Thrust Chamber Cooling	4
5	Copper Tubular Thrust Chamber Variables	9
6	Split Expander Cycle Independent Parameters	21
7	Full-Expander Independent Parameters	21
8	Split Expander Optimum Configuration	24
9	Full Expander Optimum Chamber Configuration	24
10	Four-Stage Fuel Pump Evaluation (Split Expander Engine Cycle)	42
11	Test Bed Preliminary Design Data	53
12	Von Mises Strain and Corresponding LCF Life Comparison	62

SECTION I

A. BACKGROUND

Tube bundle construction is one of the least expensive, shortest lead time, and most developed means of fabricating rocket engine thrust chambers. Most production engine thrust chambers before the Space Shuttle Main Engine (SSME) were fabricated from tube bundles. At the high combustion pressures of the SSME, high material thermal conductivity is essential to minimize hot-wall thermal gradients. Copper is the only suitable construction material with adequate conductivity to meet this requirement. Since conventional tube bundle construction requires brazing, and conventional copper alloys cannot be brazed without a prohibitive loss in tensile strength, alternative means of producing copper thrust chambers (i.e., milled channel construction) had to be developed. This type of construction is very costly, requires extensive lead time, and produces serious low-cycle fatigue life limitations.

NASA-Lewis Research Center has pioneered the use of electroforming and plasma spraying as a means of bonding copper tube bundles without exposing the copper to the high temperatures associated with brazing. Pratt & Whitney (P&W) is currently looking at special copper alloys (e.g., GlidCop™ AL-15) that can be brazed without a large reduction in strength. The development of either or both of these bonding techniques will provide new approaches for combining the advantages of tubular chamber construction with those of high-conductivity copper.

The use of copper tubular thrust chambers is particularly important in a high-performance expander cycle space engine. High performance requires high combustion chamber pressure. Expander cycle engines are limited in chamber pressure by the amount of regenerative heat available to drive the turbomachinery. Tubular chambers have more surface area than flat wall chambers (milled-channel construction), and this extra surface area provides enhanced heat transfer for additional energy to power the cycle.

B. STUDY REQUIREMENTS

The Tubular Copper Thrust Chamber Design Study was divided into two primary technical activities: (1) a Thermal Analysis and Sensitivity Study and (2) a Preliminary Design of a selected thrust chamber configuration. The thermal analysis consisted of a statistical optimization to determine the optimum tube geometry, tube booking, thrust chamber geometry, and cooling routing to achieve the maximum upper limit chamber pressure for a 25,000-pound thrust engine. Two cycle types, a split expander cycle and full expander cycle with a regenerator, were considered. In optimizing the tube geometry, the following parameters were considered: tube diameter, tube wall thickness, the number of tubes, and the degree of tube taper. In optimizing thrust chamber size, chamber length, and contraction ratio were considered.

The range of variables considered was established as follows:

• Tube diameter 0.080 in. to a maximum based on structural limits and coolant velocity requirements

• Tube wall thickness 0.015 in. to 0.050 in.

• Degree of booking (ratio of tube height to width)

1.0 to 4.0

• Chamber contraction ratio (injector area to throat area)

2.5 to 5.0

• Number of tubes

As required based on geometric considerations

above

• Chamber length

12.0 in. (required for combustion) or the length that provides maximum cycle power margin,

whichever is shortest

· Tube taper

As required for optimum cooling.

In conducting the study, a thermal enhancement of 18 percent due to the increased surface area from the tubular geometry was assumed. The effect of increasing the assumed thermal enhancement to 30 percent was also evaluated.

The goal of the preliminary design was to define a tubular thrust chamber that would demonstrate the inherent advantages of copper tube construction in full-scale hardware. The Advanced Expander Test Bed (AETB) was selected as the most appropriate vehicle for the demonstration. The AETB is being designed with a 25-percent uprated design point relative to its normal operating point. The design point is 25,000 lb thrust at 1500 psia chamber pressure, and the normal operating point is 20,000 lb thrust at 1200 psia. The thrust chamber has a contraction ratio of 3 to 1 and a conical exhaust nozzle expanding to an area ratio of 2 to 1.

The AETB configuration requirements are similar to the chamber that was defined in the split expander cycle portion of the thermal analysis and sensitivity study. These requirements are summarized in Table 1. At NASA's request, the thermal enhancement for the tubular construction was assumed to be 40 percent in the first 10 in. of the combustor, 20 percent near the nozzle throat, and 30 percent in the convergent section.

TABLE 1. — TUBULAR COPPER THRUST CHAMBER RECOMMENDED DESIGN PARAMETERS

Injector End Diameter (in.)	5.68
Throat Area (sq in.)	8.45
Contraction Ratio	3.0
Length-Injector-to-Throat (in.)	12.0 — 15
Nozzle Expansion Ratio	2.0
Coolant Bypass Flow (%)	50

C. THERMAL ANALYSIS RESULTS

The thermal analysis and sensitivity study was conducted in two parts. First, a sophisticated optimization procedure was used to find an optimum tube geometry for maximum chamber pressure. The optimization process considered the impact of changes in tube and thrust chamber geometry on total heat pickup and pressure drop, and the resulting effect on the engine cycle in terms of achievable chamber pressure. Both the split expander cycle and full expander cycle with regeneration were considered. The study assumed the heat transfer enhancement associated with the tubular geometry was 18 percent. Practical design limits were set on the turbomachinery operating conditions, and the fuel pump was limited to three pump stages.

The second part of the analysis consisted of sensitivity studies to determine the impact of changing some of the assumptions that went into the original optimization. The two most significant variables in the sensitivity study were found to be the assumed heat flux enhancement for tubes and the limitation on the number of fuel pump stages.

A comparison of achievable chamber pressure for the two cycles with 18-percent and 30-percent heat transfer enhancement is shown in Table 2. An enhancement of 18 percent produces an increase in achievable chamber pressure of 195 psi (11 percent) for the split expander cycle and 433 psi (25 percent) increase for the full expander cycle with a regenerator. An increased enhancement of 30 percent provides no additional benefit because of thrust chamber heat transfer limits in the regenerator cycle and fuel pump tip speed limits in the split expander cycle.

TABLE 2. — EFFECT OF TUBULAR CHAMBER HEAT TRANSFER ENHANCEMENT ON UPPER LIMIT CHAMBER PRESSURE

	Milled Channel Chamber	Tubular Chamber 18%	Enhancement
Split Expander Cycle Chamber Pressure (psia)	1560	1755	1758
Full Expander With Regenerator Chamber Pressure (psia)	1717	2150	2144

The split expander cycle fuel pump tip speed limitation can be overcome by addition of a fourth fuel pump stage to redistribute stage head rise. Table 3 shows upper limit chamber pressure for split expander cycles with three- and four-stage fuel pumps and 18-percent and 30-percent enhancement. With a four-stage fuel pump and 30-percent enhancement the upper limit chamber pressure is increased to 2162 psia.

TABLE 3. — THREE- AND FOUR-STAGE FUEL PUMP COMPARISON IN THE SPLIT EXPANDER CYCLE

Enhancement (%)	3-Stage Fuel Pump	4-Stage Fuel Pump
18	1755	1917
30	1758	2162

D. PRELIMINARY DESIGN SUMMARY

The preliminary design effort produced a layout drawing of a tubular thrust chamber suitable for testing in the AETB. The chamber liner has 140 copper tubes that are tapered and booked to a near optimum coolant flowpath. An electroformed jacket around the tube bundle is used to join the tubes and contain the thrust chamber pressure. The manifolds and attachment flanges are formed from Inconel 909 to minimize thermal growth differences between the thrust chamber and the injector and conical nozzle. Two alternate methods of attaching the manifold assemblies (welding to the electroformed jacket and electroforming around the attachment points) are included on the layout. A sketch of the chamber is provided in Figure 1.

Figure 1. Advanced Expander Test Bed Copper Tubular Combustion Chamber

The combustion chamber length from the injector face to the nozzle throat is 12.0 inches, 3.0 inches shorter than the AETB milled channel chamber. Based on the assumed heat transfer enhancement of 40 percent near the injector and 20 percent near the nozzle throat, this reduced-length chamber is predicted to provide a 5-percent increase in overall heat transfer and a 15-percent reduction in coolant pressure drop (including the AETB conical nozzle), as shown in Table 4. Testing this chamber in the AETB would provide a significant cycle benefit to the AETB and would confirm the inherent advantages of tubular chamber construction, even though the performance improvements measured in the AETB would be less than could be achieved in an engine specifically designed for a tubular chamber.

TABLE 4. — COMPARISON OF TUBULAR AND MILLED CHANNEL AETB THRUST CHAMBER COOLING

	Length (in.)	Total Heat Transfer (Btu)	Total Coolant Pressure (psi)
Milled Channel	15	12,420	501
Copper Tubes	12	13,010	425

SECTION II STUDY PROCEDURES

A. OPTIMIZATION METHODOLOGY

Rocket cycle optimization is a complex procedure because of the number and range of engine and thrust chamber design variables that must be considered. To establish a thrust chamber design that best meets a set of requirements, various configurations must be selected and key design variables established for each configuration. An engine cycle analysis is then performed for each combination of independent variables for each configuration selected, and the capability of each system defined. The capability is then compared to the previously established requirements and figure-of-merit. Iterations for the most promising configuration are performed to refine system capability, and the optimum variable combinations in the region of defined interest must be determined. This process of system definition with multiple design variables can be lengthy and can involve large amounts of data. To reduce the quantity of data and required time, a computerized system statistical optimization methodology to define the thrust chamber configuration was employed.

The statistical optimization tool used during this study was developed by Pratt & Whitney (P&W) during the Airplane Response Engine Selection (ARES) Program (Reference 1). Briefly, the methodology uses the following:

- · A design selector to select independent variable combinations and levels
- Performance simulators to simulate thrust chamber and engine performance and determine overall system performance levels
- A data interpolator that correlates the system performance output from the performance simulator through the use of regression analysis
- An interpreter that interrogates the performance surfaces that result from the regression equations. The interpreter incorporates optimizer logic that uses a search technique to vary independent variable levels to maximize system performance according to a selected figure-of-merit.

1. Description of Methodology

Combinations and levels of the key independent design variables are selected for use in defining overall system performance hardpoints. Levels and combinations of both thrust-chamber-associated design variables (e.g., aspect ratio) and engine-associated design variables are selected.

Engine performance data to be included in the cycle analysis are generated for all selected engine-associated design variable levels and combinations. An engine simulation deck is then used to establish the system performance levels. The output from the engine simulation deck in terms of the dependent variable levels (chamber pressure, pump pressure, turbine temperature, etc.) associated with the combinations and levels of the independent variables (contraction ratio, inlet temperature, etc.) comprise the database for the ARES methodology. Since the database includes both engine associated and thrust chamber associated variables, interaction between engine and chamber variables may be studied.

A regression program is used to fit hypergeometric surfaces for any desired dependent variable. The use of the regression equations then permits interpolation of dependent variable

solutions for independent variable combinations in addition to those comprising the database to be determined. Thus, the expanded database (the regression equations) actually constitute a series of multidimensional surfaces (one for each dependent variable regressed) where the number of dimensions is the number of independent variables in the regression equations. Second-order polynomial regression equations are used for all surface fits.

The optimization program then searches the database to find an optimum engine/thrust chamber design combination by minimizing a specified figure-of-merit (pump pressure) or maximizing a payoff function (chamber pressure) subject to constraints on specified functions (e.g., hot-wall temperature). The optimization analysis uses the surface fit functions provided by the regression equations for its payoff and constraint functions. Any number of optima may be found and an lyzed by repeated applications of the procedure with different combinations of constraints and payoff functions. Since this procedure is entirely computerized, the ARES methodology offers rapid assessment of alternative payoff functions, penalty functions, or constraint bands. Also, because the number of variable combinations can be large, the methodology can incorporate both engine and thrust chamber independent variables. Thus, the database includes engine/chamber interactive effects.

2. Design Selector

A modified central composite design (CCD) data selection pattern was used in this study. Central composite design patterns in many variations are in common use in response surface methodology. The pattern for a three-variable case can be visualized in three dimensions as a cube with a data point at each corner, a point in the center of each face, and a point in the center of the cube (Figure 2).

Figure 2. Isometric View of Three-Variable Central Composite Design Pattern

With this design pattern, many cross-plots can readily be made and cross-coupling terms defined. As the number of independent variables increases, the number of corner points goes up

dramatically (2n), while the number of face points only increases by 2n. Reducing the number of corner points to reduce the cost of data generation, therefore, becomes expedient. The equation for number of points becomes:

$$\frac{2^n}{2^k}$$
+2n+1

for k = 0 All corner points are used (full replication)

k = 1 one-half the corner points are used (half replication)

k = 2 one-quarter of the corner points are used (quarter replication)

k = 3 one-eighth of the corner point are used (eighth replication)

A five-variable data pattern is presented in Figure 3.

The solid points shown are included in the half replication pattern, while all the points shown are used in the full replication pattern. In data generation, the low (L), mid (M), and high (H) values of a variable are not always the same. At some of the corner points where upper and lower limit combinations of a variable are to be used, a converged solution is not always obtainable.

3. Regression Analysis Method

The regression technique employed during this study is a classical least squares procedure using a pivoting matrix inversion subroutine. This particular computerized regression routine is capable of handling multiple variable, noninteger power, polynomial forms. The routine has backward elimination capability using a t-status criteria. Normalization of variables was not used, since normalization was determined to have no impact upon the accuracy of surface fits.

The regression routine was modified and incorporated into a computer program with automated data handling capabilities, as a convenience for handling output and for evaluating methods developed in this study. The capabilities include the following:

- Transformation and retransformation of dependent variables for both regressed and check data
- Calculation of quadratic solutions for independent variables from 2nd order polynomial regression equation forms
- Error statistic analysis for indirect methods that use regressed variables as independent and dependent variables.

4. Selection of Study Variables

The initial step in the study was to select the independent variables for the copper tubular thrust chamber heat transfer analysis. Seven parameters were chosen (Table 5). Figures 4, 5, and 6 present the CCD matrix used for the thrust chamber analysis.

BPR	œ				,	ب								Σ								ェ				
TR	~		-			Σ			I		7		:	Σ		_	I		7			Σ			I	
Sweep	də	٦	Σ	Ι	٦	Σ	Ŧ		Σ	工	 Σ	I		∑		-	I N		Σ	Ξ		Σ	Ξ		Σ	I
	Ξ	•		0				0		•				<u> </u>	_		_	0		•	<u> </u>			•		0
I	Σ										 -			•					-							
	-	0		•				•		0			ļ. <u></u>		l			•		0				0		•
	H												ļ	•					<u> </u>		ļ					
Σ	Σ					•					•		•	•	•	•	_	l	<u> </u>			•				
	٦										 			•												
	Н	0		•				•		0	 _							•		0				0		•
	M													•												
	L	•		0				0		•								0		•				•		0
s/w	π/π		ıΣΞ	L = Low M = Medium H = High	edium			Values of Variables Used in Experiment	s of les U erime	sed nt						_	lote: Full F Half I	Replica Replica	otion: ation:	Note: Full Replication: All Points Half Replication: Solid Points	oints Poin	र्घ				

Figure 3. Schematic of Five-Variable CCD Pattern

		Z Z					80									8			,						120				
		သ •		3.5			5.8	į		8.0			3.5			5.8			8.0			3.5			5.8			8.0	
		ASP	0.	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0
		20	0		•				•		0										•		0						•
	5.0	16																											
		12	•		0				0		•										0		•						0
Ĺ		2																			-			-					
2200	3.5	16																											
	1	12																										\neg	
		20	•		0				0		•										0		•					_	0
1	2.5	16														_							\exists					7	\exists
Ĭ	L	12	0		•				•		0									П	•		0				\dashv	7	•
		20																										\neg	ㅓ
	5.0	9															_	T					\exists				1	7	┪
		12							_							7	7	T				\exists	\exists				1	┪	一
1_	Γ	20														_										\dashv	1	\dashv	\dashv
1900	3.5	16														•							\exists				1	\dashv	┪
		12						\neg										\exists				寸	\neg	\exists		1		7	ヿ゙
		8							_								7					_	7	\exists		\dashv	7	+	ᅦ
	2.5	16								┪	T		T		T	7	\neg			7	寸	寸	\exists	T	\dashv	7	1	7	ヿ
		12										\exists	\dashv			7		_		_	1	\dashv			\dashv	\dashv	寸	7	┪
		20	•		0				0		•									- i	0	T	•				•	\dashv	0
	5.0	16					1				Î				7	寸	7		寸		\neg		\exists		\exists	\dashv	1	\dashv	ヿ
		12	0		•	1			•		०			╗		1	_	\exists	寸	7	•		0		\dashv	┪	ं	7	•
		20						\neg			7		\dashv	\dashv	\dashv	寸	7		\dashv	7	7	1	\dashv	\dashv	7	\dashv	寸	7	\exists
1600	3.5	16							\dashv				T			7	7		\exists	╗		\exists	7	T	\dashv	寸	\dashv	7	\dashv
		12		一	T				\dashv	\dashv	一	\dashv	\dashv	7	\dashv	1	1	1	一	7	1	1	\dashv	\dashv	1	1	\top	\top	ヿ
		20	0	\dashv	•	\neg		1	•		0	7	1	7		一	7		7	7	•	\dashv	0	\dashv	寸	+	0	+	•
	2.5	16							1	1	7	\dashv	1	\neg	\dashv	\dashv	7	\exists	7	1	1	1	\dashv	\dashv	寸	7	\dagger	十	7
		12	•		0				ा	7	•	\exists	1		\dashv	\top	\top	\sqcap		7	히	\top	•	寸	\dashv	\dashv	•	+	0
၁	CR	ΙZ																•										-4	

Figure 4. Preliminary Advanced Thrust Chamber Optimization for T_c= 110°R

		ĭ					8									8									120				
		WC		3.5			5.8			8.0			3.5			5.8			8.0			3.5			5.8			8.0	
_		ASP	0.	2.5	4.0	1.0	2.5	4.0	1.0	2.5	0.4	0.	2.5	4.0	1.0	2.5	4.0	0.1	2.5	0.4	0:-	2.5	0.4	0.	2.5	4.0	0.	2.5	4.0
		٥	3																										П
1	5	٤	2																								_		
ſ	Ĺ	5	7-																									П	
		Š	3																	П			\vdash						
2200	3.5	3[=	2													•													\dashv
	L	[2	•	Γ																									\dashv
1		۲		Γ																									\dashv
	25	ع ا					П		7													┪					\dashv	1	\dashv
		2	!																							\dashv	ᅱ	\dashv	┪
Г		Į			П				\neg		٦								_	\dashv	\dashv	\dashv	\vdash			+		\dashv	\dashv
1	50	9						\exists					7			•					┪	\dashv	\dashv	\vdash	-	\dashv	\dashv	\dashv	\dashv
	Ì	12							\dashv	7	7	T	┪	٦						\dashv	긤	ᅱ	_	\dashv	┪	\dashv	\dashv	\dashv	ㅓ
		2			\Box	\exists			7	寸	┪	\neg	\neg			•	H		\dashv	\dashv	┪	\dashv		\dashv	\dashv	\dashv	-	-	ᅱ
96	3.5		-			Ħ	•	┪	7	┪	\dashv	\dashv	•	\dashv	•	•	•		•	7	\dashv	-	\dashv	\dashv	•	\dashv	\dashv	\dashv	\dashv
		12	_					7	7	\dashv	\dashv	┪	\exists	_		•		\dashv	7	_	\dashv	-	\dashv	-	\dashv	\dashv	\dashv	\dashv	\dashv
Ì	Γ	2					7	\exists	7	\dashv	\dashv	7	┪	\neg			\dashv	\dashv	┪	7	\dashv	\dashv	\dashv	\neg	\dashv	\dashv	-	\dashv	\dashv
1	2.5	9	1			\dashv	7		7	\dashv		7	7	7		•			\dashv	┪	\dashv	\dashv	\dashv	\dashv	-	\dashv	+	\dashv	\dashv
		12				\exists	7		7	7	1	7	寸	7		\neg	_	+	┪	┪	\dashv	\dashv	\dashv	\dashv	┪	\dashv	\dashv	+	\dashv
	Γ	2					7	1	7	7	寸	7	\dashv	\exists		┪	\dashv	7	\dashv	7	\dashv	+	┪	\dashv	+	\dashv	\dashv	\dashv	ㅓ
	5.0				\dashv	\exists	7	\dashv	\dashv	寸	\dashv	+	7	1	\dashv	\dashv	\dashv	\dashv	\dashv	_	\dashv	\dashv	\dashv	\dashv	┪	\dashv	\dashv	\dashv	\dashv
		2	\Box	7	\dashv	\dashv	7		7	寸	寸	7	+	\dashv	\dashv	\dashv	7	┪	┪	┪	+	\dashv	\dashv	┪	\dashv	\dashv	\dashv	+	\dashv
		2		\dashv	寸	+	寸	+	+	十	\dashv	寸	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	+	+	+	\dashv
909	3.5	_	T	7	寸	+	7	\dashv	+	\dashv	\dashv	+	\dashv	\dashv	\dashv	•	+	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	+	\dashv	+	\dashv
		121	1 1	7	十	+	+	+	\forall	\dashv	\dashv	十	\dashv	\dashv	\dashv	-	+	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	+	\dashv	\dashv	\dashv
	_	2	t	7	十	\dashv	\dashv	\dashv	+	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	十	+	+	+	\dashv	\dashv	+	+	\dashv	4
	2.5	_	H	7	十	\dashv	十	\top	+	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	+	\dashv	\dashv	\dashv	+	\dashv	\dashv	\dashv	+	+	+	\dashv
	, ,	12	H	\dashv	十	\dashv	\dashv	\dashv	+	+	\dashv	\dashv	\dashv	+	┰	\dashv	\dashv	+	\dashv	+	+	+	+	\dashv	\dashv	+	+	+	\dashv
ည	CR	71		1				1_		_		ᅶ			_1			_1.	ユ		_1_	_ <u> </u>						_	\dashv
Ш		L												-															-

Figure 5. Preliminary Advanced Thrust Chamber Optimization for T_c= 250°R

		Z 8												-		8									120				
		ပ ¥		3.5			5.8			8.0			3.5			5.8			8.0			3.5			5.8			8.0	
		₹ S	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	0.4	1.0	2.5	4.0	1.0	2.5	4.0
		20	0		•				•		0										•		0						
	5.0	16																											
		12	•		0				0		•										0		•						
		20																										\Box	
2200	3.5	16																					\vdash					\dashv	\dashv
~		12																					\vdash	П			\exists	\dashv	ᅦ
	Γ	20	•		0				0		•										0		•				\exists		\dashv
	2.5	_																					_				\dashv	\dashv	\dashv
		12	0		•			Н	•		0					\dashv					•		0	Н			\dashv	\dashv	
		20																		-								ᅱ	\dashv
	5.0	16	Н							\vdash		_				\dashv			Н					Н				\dashv	ᅱ
		12											Н			\dashv						Н		H			\dashv	\dashv	┥
		20					\dashv			\vdash			\vdash			\dashv		_		\dashv							\dashv	\dashv	┥
1900	3.5	16							-		-				\dashv	•			\vdash	-				Н		\dashv		\dashv	┥
-		12			-	1			_			Н			\dashv	-				\dashv	-			Н	_		\dashv	_	\dashv
		20			-		\neg		-	\dashv		_				\dashv	\dashv		Н		\dashv		_			\dashv		\dashv	┨
	2.5	16 (-		-					-			\dashv	\dashv	\dashv	\dashv	\dashv	┪	\dashv	-		Н		\dashv		\dashv	\dashv
		12			\dashv		\dashv								\dashv	\dashv	\dashv	\dashv	\dashv	┪	\dashv			Н		\dashv	-	\dashv	\dashv
Н		20 [1			0	ᅱ	\dashv		0		•		\dashv		\dashv	ᅱ	┪			┪	0			Н	\dashv		┪	\dashv	爿
	5.0	16			\dashv	\dashv	┪		\dashv		\dashv	\dashv	\dashv	-	\dashv	┥	\dashv	\dashv		\dashv	\dashv				\dashv	\dashv		\dashv	0
l .	"	12 1	0	-	•	\dashv	\dashv		•		0		\dashv				\dashv			\dashv	•		0		\dashv	\dashv	\dashv	\dashv	╣
l		20 1		\dashv	7	\dashv	\dashv	\dashv	-	\dashv	\dashv	┪	\dashv	ᅱ	ᅱ	\dashv	\dashv	\dashv	\dashv	\dashv				\vdash	ᅱ	\dashv	ᅱ	\dashv	┦
1600	3.5	19		┥	\dashv	\dashv	\dashv	\dashv	-		\dashv		┪		-		\dashv	-		\dashv				\vdash	\dashv	\dashv	-	\dashv	\dashv
=	ال	12 1		\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	-	\dashv		\dashv		\dashv	\dashv		\dashv	\dashv	\dashv		\vdash			-	\dashv	\dashv
		20 1	0	\dashv	•	\dashv	\dashv	\dashv	•	\dashv	닑	\dashv	\dashv			\dashv	\dashv	\dashv	\dashv	\dashv			\dashv	\square	\dashv			\dashv	\dashv
	2.5	16 2	ᅴ	\dashv	귀	\dashv	\dashv	\dashv	-	\dashv	의	\dashv	\dashv	-		┥	\dashv	\dashv	\dashv	\dashv	•	\dashv	의		\dashv	\dashv	+	\dashv	4
	2	12 1	•	┥	0	\dashv	\dashv	\dashv	0	\dashv	•	-	-	_	\dashv		\dashv	-	\dashv	\dashv	ᅴ	\dashv		\dashv	\dashv	\dashv		\dashv	ᅴ
\vdash	\vdash			l	<u> حا</u>				7		_		l		1						0		•						의
ည	ర్ద	12																											

Figure 6. Preliminary Advanced Thrust Chamber Optimization for T_c= 400°R

TABLE 5. — COPPER TUBULAR THRUST CHAMBER VARIABLES

Chamber Pressure (PC) — psia	1600	1900	2200
Contraction Ratio (CR)	2.5	3.5	5.0
Chamber Length (ZI) — in.	12	16	20
Tube Number (TN)	60	90	120
Coolant Flow (WC) - lb/sec	3.5	5.8	8.0
Aspect Ratio (ASP)	1.0	2.5	4.0
Coolant Inlet Temperature (TC) -*R	110	250	400

B. THERMAL ANALYSIS

The thermal analysis was conducted using P&W's nozzle/thrust chamber cooling design computer code. The code is designed to analyze tubular or machined thrust chambers and convectively cooled tubular, film-cooled, and radiation-cooled nozzles. The combustion side heat transfer rates are based on the Mayer Integral Method, to calculate the heat transfer coefficient, and enthalpy driving potential, to define a driving temperature. Enthalpy driving potential is the difference between the free-stream stagnation enthalpy and the enthalpy level at the wall. The stagnation enthalpy of the combustion gasses is strongly dependent on chamber pressure due to dissociation of the combustion products. Dissociation of the combustion products occurs at temperatures above 3000°R. At temperatures below 3000°R, the energy state can be represented adequately with specific heat.

The formulation used in the code for the combustion side heat transfer is as follows:

The following nomenclature is used in the subroutine:

area	in2	comb. flow area
C _m	dimensionless	constant in combustion eqn
$\mathbf{c}_{\mathbf{m}}$ $\mathbf{H}_{\mathbf{comb}}$	Btu/in2-sec-R	combustion heat transfer coefficient
R	i n .	comb. wall radius
8	in.	contour length from injector face
T	deg R	comb. gas temperature
V	in/sec	comb. gas velocity
wma	lbm/sec	comb. gas flow
Z	in.	axial length referenced to the throat.

The following property variables are used in the subroutine:

C_p	Btu/lbm-R	specific heat
ρ΄	lbm/in3	density
h	Btu/lbm	enthalpy
k	Btu/in-sec-R	conductivity
μ	lbm/in-sec	viscosity
Pr	dimensionless	Prandtl number.

Two values of C_p , k and μ are input with corresponding temperatures and a log-log curve fit is applied. The Prandtl number is calculated at a given temperature by the equation:

$$Pr = \mu \times C_p/k$$

A reference enthalpy (h_{ref}) and a corresponding reference temperature (T_{ref}) are input along with a stagnation enthalpy curve $(h_o$ -vs-z) which is equivalent to a stagnation temperature curve.

The three temperature locations used are:

- f comb. film (Eckert reference)
- i comb. infinity (bulk)
- w comb. wall.

According to the reference the heat transfer coefficient is

H3 =
$$\frac{(c_m \times R^{1/4} \times B^{5/4} \times Pr_t^{-2/3} \times \rho_i \times C_{pf} \times V_i)}{\int_0^s (R \times B)^{5/4} \times \rho_i \times V_i \times \mu_i^{-1} \delta_B)^{1/5}}$$

where.

B =
$$(\mu_i/\mu_f)^{-1/8} \times (T_i/Tf)^{4/5}$$
.

The denominator of the equation is referred to as the contour integral and has been found to be fairly insensitive to wall temperature. To simplify the computer program this is calculated in front of the heat transfer calculation and a contour integral curve is generated (int-vs-z).

The reduced form of the denominator, assuming finite steps from the injector face and wma/area = $\rho_i \times V_i$, for a given wall location is:

$$con = \frac{(R^{5/4} \times \mu_t^{1/4} \times T_i \times wma \times \Delta s)}{(\mu_t^{5/4} \times T_t \times area)}.$$

and

$$int_{s} = (con + (int_{s-1}^{5}))^{1/5}$$
.

The initial int at the injector face is input using the formula:

$$int_{s0.0} = \left[\frac{(2 \times wma \times R_{inj}^{1/4})}{(\pi \times \mu_i)} \right]^{1/3}$$

where,

R_{ini} = comb. wall radius at injector face.

The numerator of the equation is calculated at the axial station being run. The reduced form of the equation with wma/area = $\rho_i \times V_1$ is:

H3 =
$$\frac{(c_m \times R^{1/4} \times (\mu_f/\mu_i)^{1/4} \times T_i \times C_{pf} \times wma)}{(int_x \times Pr_t^{2/3} \times area)}$$

At present, analytical matching of data indicates a $c_m = 0.0296$.

Note: for a constant R = 1.0 these equations reduce to curved plate heat transfer.

To account for dissociation effects, enthalpy is used instead of temperature. Thus:

$$H_{comb} = H3/C_{pf}$$

and

$$q'' = H_{comb} \times edp$$

where,

edp =
$$h_o - \Delta h_k \times (1.0 - Pr_t^{1/3}) - h_{ref} + C_{pref} \times (T_{ref} - T_{well})$$

$$\Delta h_k = \frac{V_i^2}{7.21 \times 10^6}$$

A Mach number profile may be input which overrides the internal one-dimensional calculation. The input Mach number is used to calculate static pressure, hot gas velocity, and an aerodynamic area ratio (AAR). This is the area ratio at which the Mach number would occur in a one-dimensional flow field. The AAR is used to adjust the area term in the Mayer integral.

The combustion efficiency and the heat release of the chemical reaction define the local hot gas energy state for heat transfer. The energy intensity increases as the reaction process progresses through the chamber. The energy states and corresponding heat transfer driving potential are lower near the injector. The energy release profile can be generated based on theoretical behavior, or it can be input from available data. Although generally small relative to the convective heat flux component, the hot gas radiation component is evaluated within the P&W Rocket Thermal Design System, using a method formulated by Prof. A. H. Lefebvre, of Purdue University.

The internal wall thermal analysis procedure used within the computer code accounts for passage curvature, surface roughness, and large wall-to-coolant bulk temperature differences on the convective heat transfer coefficient of the coolant.

The coolant heat transfer and pressure loss formulation is:

A h_{cool} -vs-wall temperature curve is generated for a given axial location by executing the heat transfer coefficient subroutine within a loop while varying only the wall temperature.

The input for the coolant side subroutine is as follows:

d_h	in	hydraulic diameter
g	lbm/sec-in2	coolant mass velocity
P	psia	coolant static pressure
T _b	Rankine	bulk coolant temperature
T _b	Rankine	coolant wall temperature.

Other important variables are as follows:

H_{cool}	Btu/in2-sec-R	coolant heat transfer coefficient
q"	Btu/in2-sec	coolant heat flux
vel	ft/sec	coolant velocity.
	•	•

The property variables used in the subroutine are as follows:

C_{p}	Btu/lbm-R	specific heat
ρ΄	lbm/in3	density
k	Btu/in-sec-R	conductivity
μ	lbm/in-sec	viscosity.

The three temperature locations used are as follows:

The coolant film temperature is calculated using the following equation:

$$T_t = .5 \times T_{\bullet} + (.5 \times T_b)$$

The heat transfer coefficient equation for hydrogen is defined by the following equation:

$$H_{cool} = 0.0227 \times Re_f^{0.8} \times Pr_f^{0.4} \times (\rho_f/\rho_b)^{0.8} \times (k_f/d_b) \times term$$

where,

term = 1. + .01457 ×
$$\frac{(\mu_w \times \rho_b)}{(\mu_b \times \rho_w)}$$

$$Re_f = g \times d_b/\mu_f$$

$$Pr_t = \mu_t \times C_{ot}/k_t$$

Local H_{cool} coefficients are adjusted for entrance, wall roughness, and curvature effects:

$$H_{cool} = H_{cool} \times ENH_{ent} \times ENH_{vall} \times ENH_{curv}$$

The entrance effect is calculated by the following equation:

ENH_{ent} =
$$1 + \frac{(2 \times d_h)}{(x + d_h/2)}$$

where,

x = passage length.

The wall roughness effect is calculated by the following empirical equations:

eps =
$$\text{Re}_b \times \sqrt{(c)_i/2} \times \epsilon/d_h$$

prod1 = $3.074047 - 0.24377728 \times \text{antilog eps} - 0.5335861 \times \text{antilog Pr}_b$

prod2 = 0.19007 + 0.02572894 × antilog eps

 $prod3 = 0.838 \times Pr_b^{prod1} \times eps^{prod2}$

$$stp_i = \frac{(c \int_i/2)}{(1 + \sqrt{(c \int_i/2)} \times prod3)}$$

if hfropt = 0, then $ENH_{wall} = 1$

if heropt = 1, then EHN =
$$\frac{\text{stp}_1}{\text{stp}_2}$$

if hfropt = 2, then $ENH_{wall} = 1 + .4 \times (stp_1/stp_2)$

where.

 ε = absolute wall roughness

cf_i = the Moody friction factor at

 $i = 1 - > \text{rough wall}, \epsilon \text{ input}$

 $i = 2 - > \text{smooth wall}, \ \epsilon = 0.000001.$

The curvature effect is calculated externally and input as a ENH_{curv}-vs-z curve. This multiplier is applied only to the passage bottom in the thermal skin; In the tube geometry, it is applied at its maximum at the tube bottom and linearly ratioed back to 1 at 90 degrees from the bottom.

The downstream static enthalpy and pressure are calculated using a control volume analysis. The two loss factors are friction and momentum:

$$P_i = P_0 - \Delta P_{trict} - \Delta P_{mom}$$
.

The frictional pressure loss is derived from the following equations:

$$\Delta P_{\text{friet}} = \left(\frac{(4 \times \text{cf} \times \Delta x)}{d_b}\right) \times \left(\frac{\rho \times \text{vel}^2}{2 \times g_c}\right)$$

 $\dot{m} = \rho \times area \times vel$

$$d_h = \frac{4 \times area}{W_p}$$

Combining the above equations, separating for upstream and downstream, and dimensionalizing for units:

$$\Delta P_{\text{friet}} = \left(\frac{\dot{m}}{24 \times g_c}\right) \times (\Delta x/2) \times \left(\frac{(c \int_0 \times vel_0 \times W_{p0})}{area_0^2} + \frac{(c \int_1 \times vel_1 \times W_{p1})}{area_1^2}\right).$$

The pressure loss due to curvature effects is accounted for by enhancing the friction coefficient using the following equations:

$$C_{turn} = 1 + 0.075 \times Re_b^{25} \times \left(\frac{d_b}{2 \times r_c}\right)$$

$$C \int_{new} = c \int_{old} \times C_{turn}$$

where,

r = passage wall curvature radius.

The momentum pressure loss is derived from the following incompressible equation:

$$\Delta P_{mom} = \frac{\rho \times vel^2}{2 \times g_*}$$

Combining with continuity, separating upstream and downstream, and dimensionalizing for units:

$$\Delta P_{mom} = \left(\frac{\dot{m}}{24 \times g_c}\right) \times (vel_1/area_1 - vel_0/area_0).$$

Now, since $\rho = constant$:

vel, /area, = velo/area, and,

$$\Delta P_{mom} = \left(\frac{\dot{m}}{24 \times g_c}\right) \times (1/area_1 - 1/area_0) \times (vel_1 - vel_0).$$

Inlet and exit manifold losses are calculated based on input loss coefficients and the coolant velocity in the coolant passage.

Two-dimensional conduction effects are automatically evaluated within the program using a finite-element model to give tube wall temperature distributions and coolant heatup. The effect of boundary layer buildup between the tubes of a tubular chamber is taken into account by using a simplified model that restricts the effective heat transfer area to some fraction of the exposed surface area. With this model, the maximum heat transfer enhancement is 57 percent $(\pi/2)$. An enhancement of 57 percent would therefore assume no losses due to boundary layer buildup between the tubes. At the other extreme, assuming heat transfer over 64 percent of the exposed tube surface produces a heat flux equivalent to a flat plate (i.e., no enhancement).

For the parametric studies, an exposure of 73 percent was used for the chamber and nozzle. The 73-percent tube exposure results in an 18-percent heat transfer enhancement over a smooth wall. The 18-percent enhancement agrees well with RL10 test data. After the parametric studies were completed, individual cycle points were evaluated for 30-percent enhancement (82-percent exposure).

Based on preliminary studies, a single-pass counterflow tubular copper chamber and a passand-one-half parallel flow Haynes 230 nozzle were selected for the parametric study. The break point between the chamber and nozzle was set at an expansion area ratio of 6.5 to 1. The chamber and nozzle are cooled in series with the chamber being cooled first.

To reduce the number of tube geometry variables in the parametric study the following ground rules were set:

- The tubes had a variable wall thickness. The thickness was set at 0.015 in. at the throat (minimum wall thickness) for all cases. The wall thickness was set at the inlet manifold to give a pressure stress up to 90 percent of the yield strength up to a maximum thickness of 0.050 in. The thickness was varied linearly from the inlet manifold to the throat. A constant wall thickness was used from the throat to the injector unless allowable stress was exceeded. Where pressure stresses were exceeded, the same ground rules were applied upstream of the throat as downstream.
- The amount of tube booking or tube aspect ratio (ASP) was set at the throat and varied linearly from the throat to the injector and inlet manifold unless an ASP of 1 was reached. If an ASP of 1 was reached, the tube was tapered the rest of the way.
- The break point between the nozzle and chamber was set at an expansion area ratio of 6.5 for all cases. The break point was set based on tube hoop stress for a 0.050-inch thick wall at the maximum chamber pressure.
- The minimum tube width was 0.070 in.

For the parametric study, the code was used to calculate chamber wall temperature and heat flux distribution, tube hoop stress, coolant heat pickup, and pressure loss for use in the performance evaluation.

C. CYCLE ANALYSIS

Heat transfer data, generated during the thermal analysis for the copper tube chamber, were correlated through regression analysis and incorporated into the expander engine cycle deck. Cycle data were generated for both the split and full expander engines, and an optimization was conducted to determine the chamber geometry with the maximum cycle chamber pressure. This geometry was subsequently reentered into the engine design deck to ensure that none of the turbomachinery or chamber limits had been exceeded and to obtain the final cycle parameter values.

1. Thermal Data

The heat transfer data generated for each point in the chamber thermal analysis Central Composite Design (CCD) matrix (Figures 4, 5, and 6) were regression fit into suitable form for incorporation into the expander cycle design deck. The seven independent variables (Table 5) were used during the regression procedure to approximate the copper tubular chamber heat transfer characteristics. As functions of these seven independent variables, relations for the following nine dependent engine design parameters were incorporated into the design deck:

- Total chamber pressure drop (DPT) psi
- Maximum stress ratio (PRYS)
- Ultimate tube temperature margin (UTTM) "R
- Total chamber heat pick up (QTOT) Btu
- Inlet manifold pressure drop (DPIN) psi
- Chamber pressure drop (DP) psi
- Exit manifold pressure drop (DPEX) psi
- Maximum hot-wall temperature (THOT) °R
- Throat hot-wall temperature (UTTS) "R

2. Expander Engine Design Cycle Deck

The expander engine design cycle deck was used to integrate the correlated heat transfer data and chamber limits with the cycle performance data and turbomachinery limits. With this computer model, calculations of flowrates, system pressures and temperatures, and turbopump horsepower requirements were made in an iterative manner until an energy balance for the system was achieved. The following design constraints were monitored to prevent specified state-of-the-art values from being exceeded.

- Turbine tip speeds must be less than 1900 ft/sec.
- Pump impeller tip speeds must be less than 2100 ft/sec.
- Ultimate tube temperature margin must be greater than 100°R.
- Maximum hot-wall temperature must be less than 1460°R.
- Throat hot-wall temperature must be less than 1460°R.
- Maximum stress ratio must be less than 90.0.

3. Split Expander Cycle Analysis

The appropriate CCD matrix was selected to generate a combination of cycle and chamber data for regression. For the split expander cycle, a six-variable matrix was chosen to conduct the cycle analysis. The matrix is presented in Figure 7. Values for independent parameters used are listed in Table 6.

	F	Z					8									8		•							120				
	9,5) M		3.5			5.8			8.0			3.5			5.8			8.0			3.5			5.8			8.0	
	5	ASF	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0	1.8	2.5	4.0
Г		20	•		0				0		•										0		•				•		०
İ	5.0	16																											
		12	0		•				•		0										•		0				0		•
		20																											
3.2	3.5	16														•													
		12																											
		20	0		•				•		0										•		0				0		•
	2.5	16																											
		12	•		0				0		•										0		•				•		0
		20																											
	5.0	16														•													
		12																											
		20														•													
2.5	3.5	16					•						•		•	•	•		•						•				
		12														•													
ļ		20																											
	2.5	16														•													
		12																											
1		20	0		•				•		0										•		0				0		•
	5.0	16																											
		12	•		0				0		•										0		•				•		0
		20																											
8.	3.5	16														•													
		12																											
		20	•		0				0		•										0		•				•		0
	2.5	16																											
		12	0		•				•		0										•		0				0		•
TPR	CR	21																											

Figure 7. Split Expander Chamber Optimization

TABLE 6. - SPLIT EXPANDER CYCLE INDEPENDENT PARAMETERS

Turbine Pressure Ratio (TPR)	1.8	2.5	3.2
Contraction Ratio (CR)	2.5	3.5	5.0
Chamber Length (ZI) — in.	12.0	16.0	20.0
Tube Number (TN)	80	100	120
Flow Rate (WC) - lb/sec	3.5	5.8	8.0
Aspect Ratio (ASP)	1.0	2.5	4.0

Note that turbine pressure ratio was substituted in the cycle CCD matrix for chamber pressure as an independent variable so that chamber pressure could later be optimized as a function of TPR, CR, ZI, TN, and ASP. An aspect ratio of 1.8 was substituted for 1.0 in the case of the 120 tube number rows and flowrate (WC) = 8.0 (Figure 7) because of convergence requirements in the cycle deck encountered during the generation of the cycle data. This change does not affect the validity of the regression procedure.

After engine design data were generated for the 77 split expander cycle points, the regression routine was used to approximate the following variables:

- Chamber pressure (PC) psi
- Fuel turbine tip speed (UMFT1) ft/sec
- Oxygen turbine tip speed (UMOT1) ft/sec
- Percent jacket bypass flow (WJBY)
- Chamber ultimate tube temperature (UTTM) "R
- Chamber maximum hot-wall temperature (THOT) "R
- Chamber throat hot-wall temperature (UTTS) "R
- Chamber maximum stress ratio (PRYS).

Relations for these eight parameters were entered into an optimization deck to maximize chamber pressure at a specific jacket bypass flow. An optimum combination of TPR, CR, XI, ASP, and TN was found using the constraints listed in Paragraph II.C.2. These parameters were then input into the split expander cycle design deck to ensure their validity and obtain the final values for the independent variables (i.e., PC, UTTM).

4. Full Expander Cycle Analysis

The CCD matrix used to conduct the full expander with regenerator cycle analysis is shown in Figure 8. The six independent variables used are listed in Table 7.

TABLE 7. — FULL-EXPANDER INDEPENDENT PARAMETERS

Turbine Pressure Ratio (TPR)	1.8	2.5	3.2
Contraction Ratio (CR)	2.5	3.5	5.0
Chamber Length (ZI) - in.	12.0	16.0	20.0
Tube Number (TN)	80	100	120
Jacket Inlet Temperature (TIN) -'R	110.0	250.0	400.0
Aspect Ratio (ASP)	1.0	2.5	4.0

	Ī	Z					8								•	8			•			•			120		-		
	Ş) 		110			250			\$			110			250			9			110			250			\$	
	224	ASF	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0	1.0	2.5	4.0	1.8	2.5	4.0
		20	•		0				0		•										0		•				•		0
ı	5.0	16																											
		12	0		•				•		0										•		0				0		•
ı		20																											
3.2	3.5	16														•													
		12																											
ł		20	0		•				•		0										•		0				0		•
l	2.5	16																											
		12	•		0				0		•										0		•				•		0
		20																											
	5.0	16														•													
		12																										\neg	
		20														•													
2.5	3.5	16					•						•		•	•	•		•						•				
		12														•													
		20																											
	2.5	16														•													
		12																											
		20	0		•				•		0										•		0				0		•
	5.0	16																											
		12	•		0				0		•										0		•				•		0
		20																											
69.	3.5	16														•													
		12																											
		20	•		0				0		•										0		•				•		0
	2.5	16																											
		12	0		•				•		0										•		0				0		•
TPR	CR	ΙZ											-																

Figure 8. Full Expander With Regenerator Chamber Optimization

As with the split expander cycle, an aspect ratio of 1.8 was substituted for 1.0 in one of the 120 tube number cases in the matrix (Figure 8) because of difficulty experienced in the convergence of certain points. In the case of the full expander, WC was replaced with TIN as a dependent variable, since there was no bypass flow.

Following the same procedure used for the split expander, the engine design for the full expander cycle with regenerator was regressed. From the regression routine, approximating relations were obtained for the following dependent variables:

- Chamber pressure (PC) psi
- Fuel turbine tip speed (UMFT1) ft/sec
- Oxygen turbine tip speed (UMOT1) ft/sec
- Jacket Inlet Temperature (TIN) °R
- Chamber ultimate tube temperature (UTTM) °R
- Chamber maximum hot-wall temperature (THOT) R
- Chamber throat hot-wall temperature (UTTS) "R
- Chamber maximum stress ratio (PRYS).

The optimization deck was again used to optimize PC, adhering to the cycle constraints listed in Paragraph II.C.2. After the optimum chamber geometry and turbine pressure ratio were found for a specified jacket inlet temperature, these parameters were input into the full expander with regenerator cycle design deck to ensure their validity and obtain the final values for the dependent variables.

SECTION III THERMAL ANALYSIS AND SENSITIVITY STUDY RESULTS

A. SPLIT EXPANDER CYCLE OPTIMIZATION

Using the optimization procedure described in Section II, an optimum thrust chamber pressure of 1755 psia was achieved for the split expander cycle. This represents a 195 psi (11 percent) increase over a comparable cycle with a milled channel chamber (Reference 1). With this cycle (Figure 9), hot-wall temperature near the injectors and fuel pump tip speed are the critical factors limiting further chamber pressure increase. As discussed later in this section, the limitation of tip speed on chamber pressure can be overcome through use of a four-stage fuel pump. The sensitivity of the cycle and chamber to perturbations around the optimum point is shown in Figures 10 through 12. The optimum configuration for maximum chamber pressure for the split expander cycle is presented in Table 8.

TABLE 8. — SPLIT EXPANDER OPTIMUM CONFIGURATION

Chamber Contraction Ratio		3.0
Tube Aspect Ratio (ASP)	_	3.0
• Tube Number (TN)		120
• Chamber Length — in.		15.25

B. FULL EXPANDER WITH REGENERATOR CYCLE OPTIMIZATION

The optimum thrust chamber configuration with a regenerator cycle produces a chamber pressure of 2150 psia, assuming 28-percent regenerator effectiveness. This represents a 433 psi increase (25 percent) over a comparable cycle with a milled channel chamber (Reference 2). With this cycle (Figure 13), the minimum ultimate tube temperature margin is the critical factor limiting further chamber pressure increase. The sensitivity of the cycle and chamber to perturbations around the optimum point is presented in Figures 14 through 16. The optimum chamber configuration to maximize chamber pressure for the full expander with regenerator cycle is presented in Table 9.

TABLE 9. — FULL EXPANDER OPTIMUM CHAMBER CONFIGURATION

• Chamber Contraction Ratio (R)	_	3.4
Tube Aspect Ratio (ASP)	_	3.0
Tube Number (TN)	_	100
• Chamber Length — in.	_	18.0

C. VARIATION STUDIES

Following the optimization of the basic (18-percent tube enhancement) split expander and full expander with regenerator cycles, a study was initiated to examine further refinements to the cycles to achieve additional cycle improvements. These involved the following:

- Increasing assumed heat flux enhancement from the tubular geometry
- · Increasing jacket bypass flow
- Increasing the number of chamber tubes (decreasing minimum tube diameter)
- Optimizing chamber tube geometry (constant wall temperature)
- · Increasing the maximum allowable chamber hot-wall temperature
- Using a four-stage fuel pump.

Figure 9. Optimized Split Expander

Figure 10. Effect of Tube Aspect Ratio and Chamber Contraction Ratio on Achievable Chamber Pressure — Split Expander Cycle

Figure 11. Effect of Turbine Pressure Ratio and Number of Tubes on Achievable Chamber Pressure — Split Expander Cycle

Figure 12. Effect of Turbine Bypass Ratio and Chamber Length on Achievable Chamber Pressure — Split Expander Cycle

Figure 13. Optimized Full Expander With Regenerator

Figure 14. Effect of Aspect Ratio and Contraction Ratio on Achievable Chamber Pressure — Full Expander Cycle with Regenerator

Figure 15. Effect of Turbine Pressure Ratio and Number of Tubes on Achievable Chamber Pressure — Full Expander Cycle with Regenerator

Figure 16. Effect of Regenerator Effectiveness and Chamber Length on Achievable Chamber Pressure — Full Expander Cycle with Regenerator

1. Increasing Heat Flux Enhancement

The effect of increasing the assumed chamber tube enhancement from 18 percent to 30 percent was studied for both the optimized split expander cycle and the full expander with regenerator cycle. The optimized split expander cycle with 30-percent enhanced heat transfer

provides an increase in total heat flux to the chamber that is available for providing increased cycle chamber pressure. However, increasing enhancement without increasing the number of fuel pump stages tends to drive the fuel pump tip speed over the allowable limit (2100 ft/sec), forcing a reduction in turbine pressure ratio. Because the fuel pump tip speed was near the limit, the increase in chamber pressure realized as a result of increased enhancement was negligible. The final 35-percent jacket bypass split expander cycle with a chamber pressure of 1758 psia using the 30-percent enhanced heat transfer is presented in Figure 17.

Similarly, no improvement from the optimized base (18-percent tube enhancement) cycle was gained with the assumption of the 30-percent enhanced tubes for the full expander with regenerator cycle. The printout for the full expander with regenerator, 30-percent enhanced cycle is presented in Figure 18.

2. Increasing Jacket Bypass Flow

Although the effect of increased enhancement was negligible on the optimized 35-percent jacket bypass flow split expander cycle, enhancement can have significant effect at higher jacket bypass ratios. At a jacket bypass ratio of 45 percent, for instance, a cycle using 18-percent enhancement will only reach a chamber pressure level of 1640 psia before exceeding chamber hot-wall temperature limits. However, with 30-percent enhanced heat transfer, the maximum chamber pressure attainable with the 50-percent jacket bypass ratio cycle is 1756. psia (at the fuel pump tip speed limit), as shown in the cycle printout in Figure 19. An increased jacket bypass ratio cycle is possible when the increased chamber tube enhancement is assumed. The effect of increasing the bypass ratio is shown in Figure 20 for both the 18-percent and 30-percent enhanced tube configurations. As discussed in Reference 2, a high jacket bypass flow is desirable for providing cooling margin for throttling and high mixture ratio operation.

3. Increasing the Number of Tubes

The effect of increasing the number of chamber tubes (decreasing the minimum tube diameter) was analyzed for the split expander cycle with 50-percent bypass flow and 30-percent heat transfer enhancement. The effect on the chamber was a decrease in both chamber pressure loss and heat transfer. Although the cycle in Figure 21 showed a reduction in fuel pump exit pressure from 5350. to 5296. psia, the overall effect on chamber pressure from increasing the number of tubes was negligible because of fuel tip speed limits.

4. Optimizing Chamber Tube Geometry

To minimize coolant pressure drop in the chamber, the tube wall perimeter was varied to allow the wall temperature to attain its maximum temperature of 1460°R over its entire length. This chamber tube configuration resulted in the most favorable tradeoff between coolant heat flux and pressure drop. Incorporation of the optimum geometry into the 50-percent bypass flow, 30-percent enhanced split expander cycle (Figure 22) resulted in a pump exit pressure decrease of 57 psia (compare Figures 21 and 22). Chamber pressure, however, remained unaffected by the optimized tube geometry, since the cycle is operating on the 1st-stage fuel pump tip speed limit. Further significant increases in chamber pressure for the split expander cycle above the 1755 psia level appears possible only with the use of a fourth fuel pump stage to reduce tip speed.

Figure 17. Split Expander — 35-Percent Jacket Bypass/30-Percent Enhancement

Figure 18. Full Expander with Regenerator — 30-Percent Enhancement

Figure 19. Split Expander — 50-Percent Jacket Bypass/30-Percent Enhancement

Figure 20. Effect of Jacket Bypass Flow on Achievable Chamber Pressure — Split Expander Cycle

5. Increasing the Maximum Allowable Chamber Hot-Wall Temperature

The effect of increasing the allowable thrust chamber hot-wall temperature on upper limit chamber pressure was investigated for the split expander cycle with 50-percent bypass flow (i.e., the configuration that was not fuel pump tip speed limited). By raising the maximum wall and 18 percent enhancement (i.e., the configuration that was not fuel pump tip speed limited). By raising the maximum wall temperature to 1560°R, a chamber pressure of 1701 psia is achieved (Figure 23). Note that this cycle is also operating on the minimum ultimate tube temperature margin (UTTM) limit of 100°R. If the maximum wall temperature limit is raised to 1660°R and the UTTM limit is disregarded, the maximum chamber pressure is 1757 psia, as shown in Figure 24 (this cycle is operating on the pump tip speed limit).

6. Using A Four-Stage Pump

The preceding analyses showed that the maximum attainable chamber pressure for the split expander cycle, regardless of bypass ratio or assumed chamber enhancement, was bounded in the 1750 to 1760 psia range. Higher pressures were prevented by the fuel pump tip speed limit.

The use of a four-stage fuel pump was examined in an effort to decrease the pump impeller tip speed and allow further chamber pressure increase. To accommodate the additional fuel pump stage, the configuration of the fuel turbopump was altered. Back-to-back counterrotating turbines were selected to power the split rotor, four-stage fuel pump. This configuration replaced the three-stage fuel pump powered by a single two-stage fuel turbine.

150 Split Expander — 50-Percent Jacket Bypass/30-Percent Enhancement — Tubes Figure 21.

38

Split Expander — 50-Percent Jacket Bypass/30-Percent Enhancement — Optimum Tube Geometry Figure 22.

Figure 23. Split Expander — 1560°R Hot-Wall Temperature Limit

Figure 24. Split Expander — 1660°R Hot-Wall Temperature Limit

In addition to decreasing the tip speed, the four-stage fuel pump also improves pump efficiency. The higher pump efficiency provides increased pump exit pressure for an equivalent power input, providing potential for increased chamber pressure operation. Additional improvement is gained when a four-stage pump is used in a cycle previously limited by pump tip speed. The effect of the four-stage fuel pump on the split expander cycle is summarized and compared to previously optimized three-stage pump cycles in Table 10. The four-stage pump cycles are shown separately in Figures 25 through 28.

TABLE 10. — FOUR-STAGE FUEL PUMP EVALUATION (SPLIT EXPANDER ENGINE CYCLE)

Chamber Bypass	Chamber Enhancement	Maximum Chamb	er Pressure (psia)
(%)	(%)	3-Stage Pump	4-Stage Pump
35	18	1754.9	1922.2
35	30	1758.1	2049.6
50	18	1757.5*	1916.6*
50	30	1755.7	2161.7

Note:

^{*}These cycles are operating with a chamber wall temperature limit of 1660 R.

Split Expander — 35-Percent Bypass/18-Percent Enhancement — Four-Stage Pump Figure 25.

Split Expander — 35-Percent Bypass/30-Percent Enhancement — Four-Stage Pump Figure 26.

Split Expander — 50-Percent Bypass/18-Percent Enhancement — Four-Stage Pump Figure 27.

Split Expander — 50-Percent Bypass/30-Percent Enhancement — Four-Stage Pump Figure 28.

SECTION IV TUBULAR CHAMBER PRELIMINARY DESIGN

A. THERMAL ANALYSIS

The object of the chamber design effort was to prepare a preliminary design of a copper tubular thrust chamber that could be substituted for a milled channel thrust chamber in the Advanced Expander Test Bed (AETB). The AETB milled channel thermal design is shown in Figure 29. A key requirement of the design was that the tubular chamber match the AETB cycle requirements (i.e., the total heat regeneration had to be nearly equal to or higher than the milled channel chamber, and the pressure drop had to be equal or lower). Reoptimization of the AETB cycle based on the tubular chamber was not considered, since this would impact the AETB turbomachinery and control system design.

For the AETB-compatible thrust chamber preliminary design, NASA-Lewis Research Center (NASA-LeRC) recommended that the constant 18-percent enhancement used in the parametric study be modified to a variable enhancement of 40 percent in the thrust chamber decreasing to 20 percent at the throat, with a 30-percent transition in the converging section upstream of the throat. A thermal design study was initiated to evaluate the performance of a variable enhancement chamber based on a 50-percent bypass flow ratio and a minimum tube width of 0.070 in. The maximum allowable wall temperature was limited to 1460°R and maximum allowable hoop stress was limited to 90 percent of the yield stress. A minimum length of 12.0 in. (limited by required combustion length) was used because this best met AETB cycle requirements.

The initial variable enhancement configuration evaluated was based on the results of the parametric study and consisted of a counterflow cooled chamber with 120 tubes and a 50-percent bypass flow ratio. The thermal performance of this chamber (as summarized in Figure 30) shows that the coolant heat regeneration meets the cycle requirements; however, the coolant pressure drop is over 80 percent above the cycle value (913 psia versus 503 psia). Accordingly, the number of tubes was increased to 140, the maximum value consistent with a minimum tube width of 0.070 in. (The increase in the optimum number of tubes from 120 in the parametric analysis to 140 in the preliminary design was driven primarily by the lower AETB chamber pressure). The coolant pressure drop was thereby reduced to 378 psia. This was below the 503 psia allowable cycle limit, and the coolant heat regeneration was also acceptable (Figure 31). This design therefore meets the cycle requirements and maximum stress and temperature criteria as stated in paragraph II.C.2.

To ensure that problems would not arise during testing (in the event that the postulated variable enhancement was not representative of the actual chamber tube side heat transfer), the AETB thermal performance was evaluated based on other assumed heat flux profiles. The lower bound of chamber thermal performance was assumed to be a constant 18-percent enhancement. As shown in Figure 32, for this case the required cycle heat rejection would still be nearly met, and there is enough extra pressure margin to compensate for the small deficiency in heat rejection. A constant 30-percent enhancement, with a total heat regeneration comparable to the variable enhancement chamber was also evaluated. The maximum wall temperature is 1474°R which slightly exceeds the assumed 1460°R limit (Figure 33). This slight over-temperaturing could be eliminated by over-designing the variable enhancement chamber. By increasing the coolant pressure drop by 10 psia, the tube wall temperature could be decreased to the 1460°R allowable limit.

Heat Rejection 12420 12370 (Q) Btu/sec	503	501	Pressure Drop (ΔP) psia
	12370	12420	Heat Rejection (Q) Btu/sec

Figure 29. Advanced Expander Test Bed Thermal Design Milled Chamber

Coolant Parameter	Predicted Value	Cycle Value
Heat Rejection (Q) Btu/sec	13000	12370
Pressure Drop (∆P) psia	913	503

Advanced Expander Test Bed Alternative Tubular Chamber Thermal Design — Variable Enhancement (Counterflow 120 Tubes) Figure 30.

12370	503
13010	425
Heat Rejection (Q) Btu/sec	Pressure Drop (∆P) psia
	13010

Advanced Expander Test Bed Alternative Tubular Chamber Thermal Design — Variable Enhancement (Counterflow 140 Tubes) Figure 31.

Coolant Parameter	Predicted Value	Cycle Value
Heat Rejection (Q) Btu/sec	11990	12370
Pressure Drop (ΔP) psia	399	203

Advanced Expander Test Bed Alternative Tubular Chamber Thermal Design — Constant 18-Percent Enhancement (Counterflow 140 Tubes) Figure 32.

4
- 1

Advanced Expander Test Bed Alternative Tubular Chamber Thermal Design — Constant 30-Percent Enhancement (Counterflow 140 Tubes) Figure 33.

The AETB conical nozzle extension is designed specifically for series flow operation with the milled-passage chamber. The tubular chamber has better thermal performance than the milled-passage chamber; consequently, both the coolant temperature and pressure entering the Haynes-230 tubular nozzle are higher for the tubular chamber. This difference results in a slight overstressing of the Haynes tube at the nozzle exit (94 percent versus 90 percent of yield allowable). In addition, the ultimate tube temperature margin (UTTM) is 278°R which is slightly below the 300°R UTTM Pratt & Whitney (P&W) design practice for Haynes-230. By limiting the chamber pressure to 1450 psia rather than the 1500 psia AETB design point the Haynes nozzle meets the stress and UTTM design criteria. The designated 1450 psia chamber is still well above the 1200 psia AETB operating point.

Summarizing, the 140 tube variable enhancement chamber design meets the AETB cycle requirements. Moreover, the Test Bed chamber will perform satisfactorily whether the tubes exhibit variable or constant heat transfer enhancement behavior.

B. MECHANICAL DESIGN

Design data for the AETB compatible tubular chamber configuration are presented in Table 11. The preliminary design concept is shown in Figure 34. The 140 tubes are joined by an electroformed copper jacket that forms a coolant seal at the tube ends where the inlet and exit manifolds attach. The jacket seals the cooling passages and accommodates the chamber pressure thrust loads. The tubes are straight at the nozzle end (coolant inlet) and are capsealed during electroforming. The tubes are hooked at the injector end (coolant exit). Flow from the hooked ends continues through holes in the electroformed jacket and into the exit manifold. The hooked ends provide a smooth and undisturbed flow path for the coolant entering the exit manifold to minimize exit manifold losses (Figure 35).

TABLE 11. — TEST BED PRELIMINARY DESIGN DATA

Chamber Coolant Liner Material:	NASA Z
Chamber Construction:	Tubular
Number of Tubes:	140
Chamber Contraction Ratio:	3.0
Divergent Nozzle Area Ratio:	7.5
Chamber Length:	12 in.
Divergent Nozzle Length:	21.3 in.
Throat Diameter:	3.22 in.
Chamber Diameter:	5.56 in.
Chamber Volume:	244 in.
Chamber Wall Surface Area (Injector to Throat):	193 in.
Chamber Characteristic Length, (L*):	29.96 in.
Maximum Hot-Wall Temperature	1459°R
Allowable Hot-Wall Temperature	1460°R

The coolant in the chamber is counterflow. The inlet manifold and exit manifold are similar in design and are both toric with constant-diameter cross sections. Both manifolds are made up of inner and outer rings welded together. The combustion chamber inlet manifold and nozzle inlet manifold bolt together with 0.5-inch diameter through bolts.

The combustion chamber exit manifold also bolts to the injector with 0.5-inch diameter through bolts. At both combustion chamber interfaces, the seal groove is in the combustion chamber side. To minimize the blow-off loads, seal diameters are kept to a minimum. The torroidal plenums of the inlet and exit manifolds are located outside of the bolt circle to allow the bolt circles to be as close to the seals as possible. To allow access to the chamber coolant tubes a 0.375-inch diameter transfer hole is located between the bolt holes. The size and number of these

holes creates adequate flow area to minimize pressure drop. Integral standoffs are machined into the outer rings of the inlet and exit manifolds as a point of attachment for welding coolant plumbing. The piping connected to both the inlet and exit manifolds is similar. Both manifolds are welded to long-radius 90° elbows. The inlet manifold elbow is 1.25-inch schedule 80 pipe with a flow diameter of 1.28 in. The exit manifold is 22.0-inch elbow with a flow diameter of 1.50 inches.

The tube material is a high thermal conductivity copper alloy, either NASA-Z, a silver zirconium alloyed precipitation hardened copper, or GlidCop AL-15, an alumina dispersion strengthened copper. The NASA-Z has proven life-cycle fatigue properties and the GlidCop maintains its strength at temperature above the precipitation temperature of NASA-Z. The tube maximum hot-wall design point is 1460°R. The tubes have a constant 0.016-inch wall thickness, and are booked in the throat region and transition to round at both ends. Booking is necessary to maintain the correct flow area and velocity.

The tubes are capped at the nozzle end with electrodeposited copper (ED-Cu). Entrance to the tubes is formed by a circumferential channel cut through the copper jacket and outer tube walls. The cut depth is controlled through the crown of the tubes, but not beyond the electroformed copper between the crowns, to prevent hydrogen from leaking between tubes to the coolant side (Figure 36).

At the front end of the chamber, the tubes look radially outward through the jacket. The inlet and exit manifolds are manufactured as separate assemblies before chamber attachment. The inner and outer rings are machined, welded together, and then remachined.

The copper tubes are rotodrawn from thick walled cylindrical blanks. They are drawn to a straight tube with varying circular cross sections and an elongated hourglass shape. The right-angle bend for the exit is formed, and then the tube is formed to the chamber contour. The contoured tube is ovalized (booked) at most axial locations except near the ends. The flat sides of the tubes are angled 2.57 degrees for proper tube tangency. The tubes are then fit around a mandrel for fixturing during electroforming and subsequent chamber machining. Excess stock is left on both ends so that the tubes can be held to the mandrel. The tube and mandrel assembly rotates in a plating tank, where the copper jacket is formed. After the jacket is electrodeposited to 0.500-inch thickness, the ends are machined to accept the inlet and exit manifolds. The entrance channel is then cut through the jacket and tube crowns. The manifolds are fit 0.000 to 0.004 in. tight on the copper jacket. Manifolds are either welded or electroformed to the jacket.

At the coolant entrance, the tubes extend to the chamber and nozzle interface. The tubes are sealed with an electroformed cap. The tube ends are filled with wax, the exposed wax is activated, and the ends are capped with ED-Cu. This capping may be done before or after the entrance manifold attachment depending on whether the manifolds are attached by welding or electroforming.

Figure 34 Copper Tubular Combustion Chamber — Advanced Expander Test Bed Alternate Design

Figure 35. Coolant Exit (See View K on Figure 34)

Figure 36. Coolant Entrance Through Tube Outer Walls (See View F on Figure 34)

C. STRUCTURAL AND LIFE ANALYSIS

The copper tubular thrust chamber was designed to meet the AETB minimum life design criteria of 100 cycles and 2.0 hours life. The thicknesses of the ED-Cu jacket and manifolds are based on design point pressure loads, and sized to provide minimum safety factors of 1.2 yield and 1.5 for ultimate. A significant thermal gradient exists between the manifolds and attachment flanges at both the front and aft flanges of the combustion chamber. Selection of a manifold

material with a low coefficient of expansion (Incoloy 909) reduces the thermal growth differential between flanges to acceptable limits.

1. Jacket Buckling Analysis

Figure 37 shows the axial load in the ED-Cu jacket based on internal pressure loads on the chamber and nozzle. A buckling analysis of the jacket determined the jacket has a buckling factor of 30. Therefore, there is no risk of buckling due to the compressive axial load at the throat.

Figure 37. Advanced Expander Test Bed Tubular Chamber Structural Jacket Axial Load Distribution

2. Liner Life Analysis

Review of prior combustion chamber liner failures indicate failures typically occur slightly upstream from the throat. This is usually the region of maximum heat flux and largest temperature gradient between the liner and structural jacket. Figure 38 shows the average temperature of the tube wall and the coolant temperature. The electroformed copper jacket temperature is assumed to be equivalent to the coolant temperature. As indicated in Figure 35, the maximum thermal gradient between the liner wall and the jacket occurs 1.0 in. upstream of the nozzle throat (Z=1.0 in.); therefore, this location was selected as the potential life-limiting location for the tubular liner.

The tube wall was assessed for low-cycle fatigue (LCF) life and stress rupture life. The LCF life assessment is based upon the calculated concentrated strain at steady-state conditions. Minimum strain is assumed to be zero, since no transient analysis was performed. Steady state strains are dependent upon the mechanical and thermal loading within the tubes and jacket. Mechanical loads are caused by coolant static pressure and combustion static pressure at the appropriate axial location. Thermal loads are dependent upon the temperature distribution within the tube and attached structural jacket. Steady-state isotherms for the two-dimensional temperature model at Z = -1.0 in. are shown in Figure 39. The structural model (Figure 40)

shows temperature effects, in addition to the pressures and boundary conditions. Using symmetry, the structural analysis was accomplished using half a tube and the corresponding arc length of the structural jacket.

Figure 38. Advanced Expander Test Bed Alternative Tube Chamber Coolant and Tube Temperature Profiles

Figure 39. Tube Isotherms 1.0 in. Upstream of Chamber Throat (Z=-1)

Figure 40. NASTRAN Two-Dimensional Structural Modes

The electrodeposited jacket provides structural support to the tubular liner and bonds the tube bundle together, thus eliminating the need for a brazed tube assembly. As seen in Figure 40, the copper jacket/tube bond joint was assumed to occur along the upper surface of the tubes, and not along the flat tube sides. Therefore, the tube sides are allowed to deflect tangentially based upon the gap between tubes. Figure 41 shows that the tube side deflects tangentially 0.00125 in. for combined thermals and pressure. This deflection is primarily caused by the rounding of the tube from the internal coolant pressure. A significant amount of bending stress occurs at the liner side of the tube, as shown by the major principal stress contour plot in Figure 42. An elastic maximum principal stress of +91 ksi occurs on the coolant side of the tube liner wall. This stress is well over the minimum yield strength of 15 ksi for that location. However, assuming the tubes have deflected enough to consume the tangential gap between tubes, no further yielding is expected to take place, since the tube will be constrained from any further rounding. This approaches a deflection-controlled problem, based on gap size, and therefore the resulting strain is approximately equivalent to the total strain. The corresponding Von Mises total strain is 0.60 percent on the coolant side and 0.68 percent on the chamber side of the liner wall.

The LCF life of the NASA-Z tube wall is based on the predicted strain range, temperature, and material LCF characteristics. Typical LCF characterization for NASA-Z (Reference 3) is plotted in Figure 43. Using these data, the strain range of 0.68 percent on the hot wall will result in an acceptable LCF life of 3660 cycles. The average pressure induced stress across the tube wall results in an acceptable 10 hour stress rupture life.

Figure 41. Tube Tangential Deflection

Figure 42. Principal Stress Contour Plot

Figure 43. NASA-Z Low-Cycle Fatigue — Tube Chamber Versus Milled Chamber

3. Milled Chamber Life Comparison

A comparison to the milled chamber design was made to estimate the potential life improvement for a tubular liner design. The milled chamber geometry, temperatures, and pressures are based on an equivalent milled chamber design (i.e., the AETB baseline thrust chamber). An AETB chamber axial location 0.64 in. upstream of the nozzle throat was selected using the same criterion as the tube chamber: maximum thermal gradient between the coolant and the average hot wall temperature. The milled chamber was analyzed using the simplified life prediction method defined in NASA CR-168261 (Reference 4). The Von Mises strain and corresponding LCF life comparison are presented in Table 12. This comparison indicates a tubular chamber design is plastically strained much less than a milled chamber design, and thus will tolerate more firings before crack initiation.

TABLE 12. — VON MISES STRAIN AND CORRESPONDING LCF LIFE COMPARISON

Configuration	Hot Wall Temperature	Strain	LCF Life	Normalized Life
Tubular	1000°F	0.68%	3660 Cycles	10 X
Milled	1000°F	2.2 %	350 Cycles	1 X

The analysis approach employed is limited, and may not predict the actual life of the hardware for several reasons. First, the high plastic strains caused by thermals and pressures may be more accurately calculated using a plastic rather than elastic finite element approach. Also, due to the high compressive stress and temperature, creep relaxation should also be considered in the analysis approach if the combination of dwell time, temperature, and stress is sufficient to initiate material creep. Secondly, since fatigue life is dependent upon the total strain range the material experiences throughout an entire firing cycle, a complete cycle should be

evaluated, rather than only a steady-state condition. Ideally, this should include transient temperature, pressure, and boundary conditions for chilldown, start, steady state, and shutdown. This analysis approach is considerably more tedious and costly than the elastic analysis method used here, and still has some uncertainty. The method employed is believed to provide a valid relative comparison.

The membrane and bending stress/strain distribution within the tube is highly sensitive to assembly clearance between tubes. For comparison, the structural model was run with tangential boundary constraints along the flat side of the tube to simulate a zero clearance between tubes. Results show the bending stress across the ID of the tube reverses direction and becomes highly tensile on the chamber side and compressive on the coolant side. Thermals tend to govern the stress distribution within the tube ID when no gap exists between tubes and pressures tend to control stresses when there is a 0.0025-inch clearance (2×0.00125 in.) between tubes. Thus, accurate prediction of tube stress-strain history and subsequent LCF life is dependent upon the clearance between tubes. However, either condition still results in much lower strains than the 2.2 percent predicted for the milled-chamber design.

Currently, P&W is developing a life prediction methodology for tubular thrust chambers that will address the above concerns. This methodology will be used to predict the cyclic life of subscale tubular chamber designs to be tested at NASA-LeRC. Results of the testing will be used to correlate the life prediction methodology.

SECTION V RECOMMENDATIONS

Results of this study have shown a significant performance and life advantage for tubular copper thrust chambers over milled channel chambers in expander cycle space engines. On the basis of these results, the development of tubular copper thrust chambers should be vigorously pursued as key technology for such engines. Specific areas that should be addressed include the following:

- Development of tube bonding techniques (i.e., electroforming, plasma spraying or brazing) that do not significantly compromise copper properties
- A more detailed analysis and experimental confirmation of the low-cycle fatigue and creep rupture life improvement of tubular construction relative to milled channel construction
- Experimental determination of the heat transfer enhancement associated with tubular construction and development of better models to scale results from these tests.

Some of the above work is already on-going in NASA-Lewis Research Center programs of analysis and subscale testing. A logical extension of this work would be the design, fabrication, and test of a full-scale thrust chamber. The design prepared under this program is aimed at providing a thrust chamber that would be suitable for this purpose and compatible with the Advanced Expanded Test Bed (AETB).

REFERENCES

- Regression Simulation of Turbine Engine Performance-Accuracy Improvement (Task IV), Technical Report AFAPL-TR-78-103, November 1978.
- 2. Advanced Engine Study Program, Contract NAS3-23858, Task D.4, Draft Final Report, to be published.
- 3. Kazaroff, J. M.; and Repas, G. A., Conventionally Cast and Forged Copper Alloy for High Heat Flux Thrust Chambers, NASA TP-2694, February 1987
- 4. O'Donnell & Associates, Development of a Simplified Procedure for Rocket Engine Thrust Chamber Life Prediction with Creep, NASA CR-168261, October 1983

APPENDIX A DETAILED CYCLE DATA

TABLE A-1. — OPTIMIZED SPLIT EXPANDER

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1754.9
VAC ENGINE THRUST	25000.
TURBINE PRESSURE RATIO	
I OKDING SKE22OKE KWITO	2.20
TOTAL ENGINE FLON RATE	52.00
DEL. VAC. 1SP	480.1
THROAT AREA	6.97
MOZZLE AREA RATIO	1000.0
HOZZLE EXIT DIAMETER	94.20
ENGINE MIXTURE RATIO	6.00
ETA C.	0.993
CHAMBER COOLANT, DP	424.
CHAMBER COOLANT DT	790.
NO2ZLE/CHAMBER O	14352

ENGINE STATION CONDITIONS

	* FUEL	SYSTEM CO	MDITIONS .		
STATION	PRESS	TEMP	FLOM	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	7.45	-107.5	4.37
B.P. EXIT	100.8	38.5	7.45	-103.0	4.39
PUMP INLET	100.8	38.5	7.45	-105.0	4.39
IST STAGE EXIT	2370.5	71.5	7.45	41.9	4.41
JBV INLET	2323.1	71.9	2.60	41.9	4.38
JBA EXIL	1974.6	74.6	2.60	41.9	4.15
2ND STAGE EXIT	3782.8	90.3	4.85	128.9	4.46
PUMP EXIT	5189.1	108.3	4.85	214.4	4.52
COOLANT INLET	5137.2	108.8	4.85	214.4	4.50
COOLANT EXIT	4712.8	878.9	4.85	3174.5	0.87
TBV INLET	4665.7	899.2	8.24	3174.5	0.86
TBV EXIT	2067.6	916.9	0.24	3174.5	8.40
O2 TRB INLET	4665.7	899.2	4.61	3174.5	0.86
OZ TRB EXIT	4130.5	877.2	4.61	3083.4	8.79
HZ TRB IMLET	4130.5	877.2	4.61	3083.4	0.79
H2 TRB EXIT	2193.4	772.5	4.61	2667.6	0.50
HZ TRB DIFFUSER	2165.8	7/2.6	4.61	2667.6	0.49
H2 BST TRB IN	2143.3	772.6	4.61	2667.6	0.49
H2 BST TRB OUT	2119.5	770.8	4.61	2660.3	0.49
H2 BST TRB DIFF	2112.5	770.9	4.61	2660.3	0.48
OZ BST TRB IN	2091.4	771.0	4.61	2660.3	0.48
OZ BST TRB OUT	2079.0	770.0	4.61	2656.3	0.48
OZ BST TRR DIFF	2078.0	770.0	4.61	2656.5	0.40
H2 TANK PRESS	18.6	789.9	0.0076	2682.2	0.0044
GOX HEAT EXCH IN	2067.6	777.4	4.84	2682.2	0.47
GOX HEAT EXCH OU	T 2057.2	776.8	4.84	2680.1	0.47
MIXER HOT IN	2057.2	776.8	4.84	2680.1	0.47
MIXER COLD IN	1974.6	74.6	2.60	41.9	4.15
MIXER OUT	1954.4	519.0	7.44	1759.2	0.65
FSOV INLET	1954.4	519.8	7.44	1759.2	0.65
FSOV EXIT	1905.5	520.0	7.44	1759.2	0.64
CHAMBER INJ	1886.5	520.0	7.44	1759.2	0.63
CHAMBER	1754.9				

	• 0XY	GEN SYSTEM	COMDITION	S •	
STATION	PRESS	TEMP	FLON	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	44.7	. 61.9	70.99
B.P. EXIT	135.2	165.3	44.7	62.3	70.84
PUMP INLET	135.2	165.3	44.7	62.3	70.84
PUMP EXIT	2842.1	170.0	44.7	71.7	71.38
DZ TANK PRESS	16.0	400.0	0.076	204.7	0.12
OSOV INLET	2813.7	178.1	6.7	71.7	71.34
OSOV EXIT	1969.6	181.4	6.7	71.7	70.03
OCV INLET	2013.7	178.1	37.9	71.7	71.34
OCV EXIT	1969.6	181.4	37.9	71.7	70.03
CHAMBER INJ	1949.9	101.5	44.6	71.7	69.99
CHAMBER	1754.9				

. VALVE DATA .

VALVE	DELTA P	AREA	FLON	1 BYPASS
1BA	348.	0.10	2.60	34 .87
TBV	2598.	0.01	0.24	5.00
FSOV	49.	1.92	7.44	
OCV	844.	0.23	44.64	

. INJECTOR DATA .

INJECTOR	DELTA P	AREA	PLOM
FUEL	132.	1.22	7.44
LOX	195.	0.57	44.64

TABLE A-1. — OPTIMIZED SPLIT EXPANDER (CONTINUED)

	HERY PERFORMANCE DATA .		
# HZ BOOST TURBINE #	4 H2 900ST P		

EFFICIENCY (T/T) 0.844	EFFICIENCY	0.765	
EFFICIENCY (T/S) 0.419	HORSEPOHER	4.	
SPEED (RPM) 41	SPEED (RPH)	41544.	
MEAN DIA (IN) 1.86	S SPEED	3045.	
EFF AREA (INZ) 1.97	HEAD (FT) DIA. (IM)	270 1.	
U/C (ACTUAL) 0.553	DIA. (IN)	2.43	
MAX TIP SPEED 432. STAGES 1	TIP SPEED	439.	
GANNA 1.60	VOL. FLOM MEAD COEF	761. 0.450	
GAPRIA 1.40 PRESS RATIO (T/T) 1.01	FLON COEF	0.201	
PRESS RATIO (T/S) 1.02	· tun tub	4.241	
HORSEPONER 48.			
EXIT MACH MUMBER 0.07 SPECIFIC SPEED 131.51			
SPECIFIC DIAMETER 0.65			

* N2 TURBINE *	4 12 PUP		
4 10 10 10 10 10 10 10 10 10 10 10 10 10	- K2 PBP		
			STAGE THREE
			31AUE 1445E
EFFICIENCY (T/T) 0.832	EEEICIENSV A 450	0.677	0.677
EFFICIENCY (T/S) 0.811 SPEED (RPH) 125000.	HORSEPOHER 1526. SPEED (RPH) 125000.		
SPEED (RPH) 125000.	SPEED (RPH) 125000.	125000.	125000.
HORSEPONER 2711.	44 CDFFD 11 TOO	45858. 3.10	
PEAN DIA. (IN) 2.77 EFF AREA (IN2) 0.24 U/C (ACTUAL) 0.469 MAX TIP SPEED 1602.	S SPEED 765.	61.	687.
U/C (ACTIMAL) 8.449	PLAU (FI) /4233.	45858.	45077.
MAX TIP SPEED 1602.	TIP SPEED 2097.	3.10 1693.	3.10 1692.
	VOL. FLOH 759.	488.	481.
GAMMA 1.48	HEAD COEF 8.543	0.515	
PRESS MATIO (T/T) 1.88	FLOH COEF 8.895	******	
GAMMA 1.40 PRESS RATIO (T/Y) 1.88 PRESS RATIO (T/S) 1.92	DIAMETER RATIO 8.328		
EXIT MACH NUMBER 0.14	BEARING DN 3.00E+06		
	SHAFT DIAMETER 24.00		
SPECIFIC DIMETER 1.79			
* 02 800ST TIRBINE *	₹ C2 BOOST PE	P .	

EFFICIORY (T/T) 0.875	EFFICIENCY	0.764	
EFFICIENCY (T/S) 0.790	HORSEPONER	26.	
SPEED (RPN) 11043. MEAN DIA (IN) 5.11	SPEED (RPN)	11043.	
EFF AREA (192) 2.75	S SPEED	3826. 262.	
U/C (ACTUAL) 8.553	HEAD (FT) DIA. (IN)	2.73	
MAX TIP SPEED 271.	TIP SPEED	132.	
STAGES 1	VOL. FLON	283.	
GAPPIA 1.40	HEAD COEF FLOH COEF	0.458	
PRESS RATIO (T/T) 1.01 PRESS RATIO (T/S) 1.01	FLON COEF	0.200	
EXIT MACH MAPRIER 8.65			
SPECIFIC SPEED 67.53			
SPECIFIC DIMETER 1.23			

• Q2 TURBINE •	• 02 PUIP		
######################################	######################################		
EFFICIENCY (T/T) 0.859 EFFICIENCY (T/S) 0.829	EFF1CIENCY HORSEPONER	8.747	
SPEED (RPH) 68164.	HORSEPONER SPEED (RPN)	5%. 6 8164.	
HORSEPONER 594.	SS SPEED	22656.	
	S SPEED	1800.	
EFF AREA (IN2) 0.32			
U/C (ACTUAL) 8.547	HEAD (FT) DIA. (IM)	2.16	
MAX TIP SPEED 865.	TIP SPEED	642.	
STAGES 2	VOL. FLON	201.	
GAPPIA 1.40 PRESS RATIO (T/T) 1.13	HEAD COEF	8.426	
PRESS RATIO (T/T) 1.13 PRESS RATIO (T/S) 1.13	FLOM COEF	0.153	
EXIT MACH MARKER 6.07	DIAMETER RATIO	0.601	
	MEADING PM	I . RAF -BA	
SPECIFIC SPEED \$0.43	BEARING ON SHAFT DIAMETER		
SPECIFIC SPEED 50.63 SPECIFIC DIMETER 1.58	BEARING DM SMAFT DIAMETER		

TABLE A-1. — OPTIMIZED SPLIT EXPANDER (CONTINUED)

CHANGER & NOZZLE MEAT TRANSFER .

** CHAMBER DESIGN **

CHWINER MATL/TYPE	COPPER/TUBULAR
HOA (LBM/SEC), CHAMBER FLOM	4.85
DPIP (PS'D). INLET DELTA P	49.15
DP (PSID), CHAMBER DELTA F	205.74
DPEX (PSID). EXIT DELTA P	98.23
DPE (PSID), TOTAL DELTA P	353.11
QTOT (BTU/S). HEAT TRANSFER	10710.84
DICH (R). DELTA TEMPERATURE	578.32
UTTH. ULTIMATE TEMP MARGIN	154.75
PRYS. MAX STRESS RATIO	58.20
THOT. HAX HOT HALL TEMPERATE	RE 1431.53
UTTS. THROAT MAX TEMPERATURE	1127.50
ASP. ASPECT RATIO	3.00
ZI (IN). CHAMBER LENGTH	15.25
ARI. CONTRACTION RATIO	3.00
TH. HUMBER OF TUBES	120.00

TABLE A-2. — OPTIMIZED FULL EXPANDER WITH REGENERATOR

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	2150.9
VAC ENGINE THRUST	25000.
TURBINE PRESSURE RATIO	2.250
TOTAL ENGINE FLON RATE	52.07
DEL. VAC. ISP	480.1
THROAT AREA	5.67
MOZZLE AREA RATIO	1000.0
HOZZLE EXIT DIAMETER	85.15
ENGINE MIXTURE RATIO	6.00
ETA C+	0.993
CHAMBER COOLANT DF	856.
CHAMBER COOLANT DT	584.
MOZZLE/CHAMBER Q	16189.

			*********	••••	
		SYSTEM CO	MDITIONS .		
STATION	PRESS	TEMP	FLON	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	7.45	-107.5	4.37
B.P. EXIT	100.8	30.5	7.45	-103.0	4.39
PUP INLET	100.8	50 . 5	7.45	-103.0	4.39
IST STAGE EXIT		70.6	7.45	30.7	4.41
2ND STAGE EXIT	4552.2	101.1	7.45	170.1	4.48
PUP EXIT	6776.6	129.7	7.45	315.5	4.57
COLD REGEN IN	6708.8	130.2	7.45	\$15.5	4.55
COLD REGEN EX	6641.7	294.7	7.45	949.6	2.83
COOLANT INLET	6641.7	294.7	7.45	969.6	2.83
COOLANT EXIT	5785.6	678.4	7.45	5123.7	1.06
TBV INLET	5727.7	878.9	0.37	3123.7	1.06
TEV EXIT	2482.7	877.6	0.37	3123.7	0.49
OZ TRB INLET	·\$727.7	876.9	7.87	\$128.7	1.06
OZ TRB EXIT	5177.8	861.4	7.07	3050.2	0.98
HZ TRB INLET	5177.8	861.4	7.47	3050.2	0.76
HZ TRO EXIT	2632.7	753.4	7.07	2409.5	0.61
HE TRE DIFFUSER	2592.7	753.6	7.87	2609.5	0.60
NS ARE LINE IN	2566.7	753.6	7.07	2609.5	0.60
H2 BST TRB IN H2 BST TRB OUT H2 BST TRB DIFF	2546.6	752.6	7.07	2604.7	0.59
M2 BST TRE DIFF	2531.9	752.7	7.07	2604.7	0.57
	2340.0	752.#	7.07	2604.7	0.58
OZ BST TRB OUT OZ BST TRB OAFF	2494.6	752.2	7.07	2602.2	0.50
OZ BSI TRE DIFF		752.2	7.47	2602.2	0.58
HZ TANK PRESS BOX HEAT EXCH IN		774.5	0.0077	2620.2	0.0045
		759.4	7.44	2628.2	0.57
GON HEAT EXCH OUT		759.5	7.44	2626.9	0.57
HOT REGEN EX	2470.3 2396.2	759.5	7.44	2626.9	0.57
	2396.2	501.5	7.44	1992.2	0.71
FSOV EXIT	2336.3	501.4 501.0	7.44 7.44	1992.2	0.71
	2312.9	501.9	7.44	1992.2	0.49
CHAMBER	2150.9	301.7	7.44	1992.2	0.60
	2130.7				
			COMDITIONS		
STATION	PRESS	TEN	FLON	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	44.7	61.9	70.99
B.P. EXIT	135.2	165.3	44.7	- 62.3	70.84
PUP INLET	135.2	145.3	44.7	62.5	70.84
PUP EXIT	3483.5	101.0	44.7	74.0	71.48
PUPP EXIT OZ TANK PRESS OSOV INLET DSOV EXIT	16.0	400.0	0.076	204.7	0.12
OSOV INLET	3448.7	181.2	6.7	74.0	71.43
		105.5	6.7	74.0	69.85
OCA INTEL	3448.7	181.Z	37. 9	74.0	71.43
OCV EXIT	2414.1	105.5	37.9	74.0	69.85
CHARES IN	2389.9	105.4	44.6	74.0	69.81
CHARGES	2150.9				
	_	VALVE DA	74 -		
	•	AWTAE DW			
VALVE	DELTA P	AREA	FLON	E EVPASS	
TEV	3245.	0.01	0.37	5.00	
FSOV	60.	1.66	7.44		
OCV	1035.	0.21	44.63		
	•	INJECTOR	DATA .		
IN WESTER					
INJECTOR FUEL	DELTA P	AREA	FLON		
FUEL LOX	162.	1.05	7.44		
COR	239.	0.52	44.63		

TABLE A-2. — OPTIMIZED FULL EXPANDER WITH REGENERATOR

(CONTINUED) . TURBOMACHINERY PERFORMANCE DATA . ~~**************************** ************ * H2 BOOST TURBING . 9 H2 BOOST PIMP . EFFICIENCY (T/T) 0.815 EFFICIENCY (T/S) 0.413 EFF ICIENCY HORSEPONER 48. SPEED (RPH) 41350. SPEED (RPH) S SPEED HEAD (FT) DIA. (IN) 41350 (IN) 1.44 MEAN DIA EFF AREA (142) 2.94 2791 (ACTUAL) U/C 0.531 MAX TIP SPEED 2.43 380. TIP SPEED 439. STAGES VOL. FLOW 761 SAMM 1.42 PRESS RATIO (T/T) HEAD COEF HEAD COEF FLOM COEF 0.450 1.01 0.201 PRESS MATIO (T/S) 1.62 HORSEPONER 40. EXIT MACH NUMBER 0.09 SPECIFIC DIMETER 0.61 ********** . HZ TURBINE . . HC PIBE . ********* STAGE ONE STAGE THO STAGE THREE EFFICIENCY (1/T) 0.847 EFFICIENCY (1/S) 0.825 EFFICIENCY 0.661 0.662 0.662 HORSEPONER 1467. SPEED (RPH) 125000.
HORSEPOMER 4411.
HEAN DIA. (IN) 3.29
EFF AREA (IN2) 0.28 1495. SPEED (RPH) 125000. 125000. 125000. SS SPEED 11320. S SPEED 775. 778. MEAD (FT) DIA. (IN) 72927. U/C (ACTUAL) MAX TIP SPEED 71837. 70760. 0.540 3.81 3.81 3.81 2081. TIP SPEED
VOL. FLON
MEAD COEF
FLON COEF 1887. 2000. STAGES 2 747. 257. GANNA | 1.42
| PRESS RATIO (T/T) | 1.97
| PRESS RATIO (T/S) | 2.01
| EXIT MACH MUMBER | 0.16
| SPECIFIC SPEED | 40.66
| SPECIFIC DIAMETER | 1.91 1.42 0.542 0.534 0.526 1.97 DIMETER RATIO 9.331 3.80E+86 SMAFT DIAMETER 0.14 * 02 800ST TURBINE # * 02 900ST PUPP # ************** ------EFFICIENCY (T/T) 0.877 EFFICIENCY (T/S) 0.752 EFFICIENCY. 0.744 HORSEPONER (RPH) 11044. (IN) 4.11 (IN2) 4.26 SPEED) SPEED (RPH) S SPEED NEAD (FT) DIA. (IN) 11044 HEAH DIA 4.11 4.26 3026. EFF AREA U/C (ACTUAL) 0.552 MAX TIP SPEED DIA. TIP SPEED 2.73 234. 132. STAGES CAPEL 1.42 HEAD COEF 9.450 PRESS RATIO (T/T) FLON COEF 1.00 8.200 PRESS RATIO (T/S) 1.00 HORSEPONER 24. EXIT HACH HARBER 0.03 SPECIFIC SPEED 10.26 SPECIFIC DIMETER 0.87 ********** ---------. OF TURBINE . * 02 PUP * ********** ********* EFFICIENCY (T/T) 0.054 EFFICIENCY (T/S) 9.006 **EFFICIENCY** HORSEPONER 736. SPEED (RPH) 73506. SPEED (RPH) HORSEPONER 73500 SS SPEED 736. 24428. MEAN DIA (IN) 3.29 EFF AREA (IN2) 0.43 U/C (ACTUAL) 6.550 S SPEED HEAD (FT) DIA. (IN) 4743. MAX TIP SPEED 2.19 1111. TIP SPEED 702. VOL. FLOW 201. GAITHA 1.42 FLON COEF HEAD COEF 0.440 PRESS RATIO (T/T) 1.11 1.11 0.147 PRESS RATIO (T/S) DIAMETER RATIO 0.677
BEARING DN 1.47E+06
SMAFT DIAMETER 20.00 EXIT MACH MUNBER 0.09 SPECIFIC SPEED 42.28 SPECIFIC DIMETER 1.88 REGENERATOR DATA *********** COLD SIDE HOT SIDE DELP 47.00 74.11 DELT 164.49 -177.83 1.69 0.44

AREA

FLOM EFFECTIVENESS

HTU

CRATIO CHIM REGEN O 0.44 7.45 0.20 0.41 0.92

A-5

0.41 0.92 24.55 4720.90

TABLE A-2. — OPTIMIZED FULL EXPANDER WITH REGENERATOR (CONTINUED)

.. CHAMBER DESIGN ..

CHARGER MATL/TYPE	COPPER/TUBULAR
CASE MUMBER	1.0
MDA (LBM/SEC). CHAPBER FLOH	7.45
DPIN (PSID). INLET DELTA P	152.77
DP (PSID). CHAPGER DELTA P	442.15
OPER (PSID). EXIT DELTA P	160.11
DPT (PSID). TOTAL DELTA P	755.02
QTOT (BTU/S). HEAT TRANSFER	12410.55
DICH (R). DELTA TEMPERATURE	440.84
UTTH. ULTIMATE TEMP MARGIN	100.62
PRYS. MAX STRESS RATIO	78.57
THOT. MAX HOT MALL TEMPERATE	RE 1480.15
UTTS. THROAT MAX TEMPERATURE	1401.49
ASP. ASPECT RATIO	3.00
ZI (IN). CHAMBER LENGTH	18.00
ARI. CONTRACTION RATIO	3.40
THI NUMBER OF TUBES	100.00

TABLE A-3. — SPLIT EXPANDER—35-PERCENT JACKET BYPASS/30-PERCENT ENHANCEMENT

ENGINE PERFORMANCE PARAMETERS

CHWIBER PRESSURE	1758.1
VAC ENGINE THRUST	25000.
TURBINE PRESSURE RATIO	1.96
TOTAL ENGINE FLON RATE	52.08
DEL. VAC. ISP	480.1
THROAT AREA	6.96
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	94.12
ENGINE MIXTURE RATIO	6.00
ETA C.	0.993
CHAMBER COOLANT DP	622.
CHANGER COOLANT DT	883.
HOZZLE/CHWHBER Q	15894.

	• FUEL	SYSTEM CO	NOITIONS =		
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	7.45	-107.5	4.37
B.P. EXIT	100.5	38.5	, 7.45	-103.0	4.39
PUPP INLEY	100.5	38.5	7.45	-103.0	4.39
IST STAGE EXIT	2374.9 2327.4	71.6	7.45	42.3	4.41
JBV EXIT	1978.3	72.0 74.7	2.60 2.60	42.3 42.3	4. 58 4.15
2HD STAGE EXIT	3622.9	87.5	4.85	117.3	4.47
PUMP EXIT			4.85	191.3	4.53
COOLANT INLET	4871.2 4822.5	103.4	4.85	191.3	4.51
COOLANT EXIT	4204.5	986.4	4.85	3468.4	0.72
TBV INLET	4158.5	986.7		3468.4	0.72
TBV EXIT		1001.1	0.24	3468.4	0.37
OZ TRB INLET	4158.5	986.7	4.61	3468.4	0.72
02 TRB EXIT	3723.2 3723.2	963.6	4.61	3377.1	0.66
	2191.4	963.6 862.1	4.61 4.61	3377.1 2 9 85.4	0.46 0.45
			4.61	2985.4	0.44
H2 BST TRB IN H2 BST TRB OUT H2 BST TRB DIFF	2166.2	862.3 862.3	4.61	2985.4	0.44
HZ BST TRB OUT	2122.8	860.5	4.61	2978.1	0.44
H2 BST TRB DIFF	2115.9	360.6	4.61	2978.1	0.44
OZ BST TOR 14	2094.7	840.7	4.61	2978.1	0.43
02 BST TRB OUT	2083.6	859.6	4.61	2974.2	0.43
02 BST TRB DIFF	2082.6	859.7	4.61 0.0068 4.84	2974.2	0.43
HZ TANK PRESS	18.6	880.1	0.0068	2998.9	9.6040
02 BST TRB OUT 02 BST TRB DIFF H2 TANK PRESS GOX HEAT EXCH OUT	2072.2	866.7		2998.9	1.42
WALLEY CHEN OUT	2441.7		4.84	2996.8	8.42
MIXER HOT IN	1978.3	866.2 74.7	4.84 2.60	2996.8	0.42 4.15
MIXER COLD IN MIXER DUT			7.44	42.3 1965.7	0.59
FSOV INLET	1958.8 1958.8	576.3	7.44	1965.7	0.59
	1707.8	574 A	7 44	1965.7	0.58
	1890.7	576.7	7.44	1965.7	0.57
CHAMBER	1758.1				
STATION		GEN SYSTEN		ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	44.7	61.9	70.99
B.P. EXIT	135.2		44.7	62.3	79.84
PUMP INLET	135.2	145.3	44.7	62.3	70.84
PUPP EXIT	2847.4	178.0	44.7	71.7	71.39
OZ TANK PRESS	16.0	400.0	0.076	204.7	9.12
02 TANK PRESS OSOV INLET	2018.9	178.2	6.7	71.7	71.34
OSOV EXIT	1973.2	181.5	6.7	71.7	79.92
	2818.9	178.2	\$7.9	71.7	71.34
	1973.2	181.5	37.9	71.7	70.02
	1953.5	181.5	44.6	71.7	69.99
CHAMBER	1758.1				
		VALVE DA	TA •		
VALVE	DELTA P	AREA	FLOH	2 BYPASS	
787	349.	0.10	2.60	34.87	
TBV	2086.	0.01	0.24	5.00	
FSOV	49.	2.02	7.44		
OCV	844.	0.23	44.64		
		INJECTOR (SATA 4		
			e, e		
	DELTA P				
FUEL	133.		7.44		
FOX	195.	0.57	44.64		

TABLE A-3. — SPLIT EXPANDER—35-PERCENT JACKET BYPASS/30-PERCENT ENHANCEMENT (CONTINUED)

		INERY PERFORMANCE			

. H2 BOOST TU			H2 BOOST P		

EFFICIENCY (T/T)			CIENCY		
EFFICIENCY (T/S) SPEED (RPM)			EPOMER D (RPH)	48.	
MEAN DIA (IN)			EED (KPW)	41262. 3049.	
EFF AREA (IN2)	2.20			2689.	
U/C (ACTUAL)		DIA.	(FT) (IN)	2.43	
HAX TIP SPEED	437.		PEED	438.	
STAGES GANNA	1 1.42		FLOH COEF	761. 0.450	
PRESS RATIO (T/T)		FLON	COEF	0.201	
PRESS RATIO (T/S)	1.01				
HORSEPOHER	48.				
EXIT MACH HUMBER SPECIFIC SPEED					
SPECIFIC DIMETER					
	0.00				
*********			********		
# H2 TURBINE			· HZ PUIP		
446648446	•		STACE ONE		STACE THEFT
					STAGE THREE
EFFICIENCY (T/T) EFFICIENCY (T/S)	0.842	EFFICIENCY	0.458		
EFFICIENCY (T/S)	0.819	HORSEPOHER	1531.	515.	500.
SPEED (RPH) HORSEPOHER	125000.	SPEED (RPH)	125000.	125000.	125000.
HORSEPONER	2553.	SS SPEED	11356.		
HEAH DIA. (IN) EFF AREA (IN2)	0.27	S SPEED HEAD (FT)	764.	967. 40492.	970. 10052
U/C (ACTUAL)	0.486	DIA. (IN)	3.84	2.94	
MAK TIP SPEED	1620.	TIP SPEED	2099.	1603.	
STAGES	2	VOL. FLOM	759.	487.	481.
GAPNA PRESS RATIO (T/T)	1.42 1.70	HEAD COEF FLOH COEF	0.543	0.507	0.500
PRESS RATIO (1/5)		DIAMETER RATIO	0.094		
EXIT MACH NUMBER		BEARING DN			
SPECIFIC SPEED	41.78	SHAFT DIAMETER			
SPECIFIC DIMETER	1.68				
E4020046400481					
# 02 BOOST TUR			02 BOOST PU		
************			*********		
EFFICIENCY (T/T)			IDICY		
EFFICIENCY (T/S) SPEED (RPH)		HORSE	POHER (RPH)	26.	
	5.11	S SPE		3026.	
EFF AREA (INZ)		HEAD	(F7)	242.	
U/C (ACTUAL)	0.553	DIA.	CIM)	2.73	
MAX TIP SPEED	273.	TIP S	PEED	132.	
STAGES GAINA	1 1.42	VOL. (283.	
PRESS RATIO (T/T)		FLON (0.450 0.200	
PRESS RATIO (T/S)			-		
HORSEPOHER	26.				
EXIT MACH NUMBER SPECIFIC SPEED	0.03				
SPECIFIC SPEED					

OZ TURBINE .			02 PUP +		
EFFICIENCY (T/T)			ENCY	0.747	
EFFICIENCY (T/S)			POMER	0.747 595.	
SPEED (RPH)		SPEED	(RPN)	68217.	
		SS SPI	9ED 9D	22675.	
HEAN DIA (IN)	2.79			1799.	
EFF AREA (IN2)	0.39	re:AU	(FT)	5469.	
W/C (ACTUAL) HAX TIP SPEED		DIA. Tip es	(IN)	2.16 643.	
STAGES	2	VOL. (281.	
GAPPIA	1.42	HEAD (0.426	
PRESS RATIO (T/T)		FLOH (0.153	
PRESS RATIO (T/S)			ER RATIO	0.681	
EXIT MACH NUMBER SPECIFIC SPEED	0.07		G DN 1 DIAMETER		
SPECIFIC SPEED SPECIFIC DIAMETER		SHAFT	UIATER	Z0.00	
and the second light	,				

TABLE A-4. — FULL EXPANDER WITH REGENERATOR—30-PERCENT ENHANCEMENT

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	2144.3
VAC ENGINE THRUST	25000.
TURBINE PRESSURE RATIO	2.200
TOTAL ENGINE FLON RATE	52.07
DEL. VAC. ISP	480.1
THROAT AREA	5.71
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	85.28
ENGINE MIXTURE RATIO	6.00
ETA C#	0.993
CHAMBER COOLANT DP	1119.
CHAMBER COOLANT DT	619.
NOZZLE/CHAMBER Q	17078.

			NOITIONS .		
STATION	PRESS	TEMP	PLOH	EHTHALPY	DENSITY
B.P. INLET	18.6	37.4	7.45	-107.5	4.37
B.P. EXIT	100.2	38.5	7.45	-103.0	4.59
PUIP INLET	100.2	38.5	7.45	-103.0 42.3	4.41
IST STAGE EXIT	2375.0	71.6 102.8	7.45 7.45	185.0	4.47
PUMP EXIT		132.1	7.45	325.7	4.56
COLD REGEN IN	6895.5 6826.5	132.6	7.45	\$25.7	4.54
COLD REGEN EX	6758.3	294.7	7.45	951.8	2.86
COOLANT INLET	6758.3	294.7	7.45	951.8	2.86
COOLANT EXIT	5639.1	913.9	7.45	3245.4	1.01
TBV INLET	5582.7	914.3	0.37	3245.4	1.00
TBV EXIT	2474.5	934.5	0.37	3245.4	0.47
OZ TRB INLET	5582.7	914.3	7.07	3245.4	1.00
OZ TRB EXIT	5070.1	896.5	7.07	3172.1	6.93
HZ TRB INLET	5070.1	896.5	7.07	3172.1	0.93
H2 TRB EXIT	2621.1	784.8	7.07	2720.7	0.58
HZ TRB DIFFUSER	2583.0	785.0	7.07	2720.7	0.57
	2557.2	785.0	7.67	2720.7	0.57
H2 BST TRB OUT	2537.9	784.0	7.07	2716.0	6.57
HZ BST TRB DIFF	2523.1	784.1	7.87	2716.0	0.56
02 BST TRB IN	2497.9	784.2	7.87	2716.0	8.56
OZ BST TRB OUT	2488.4	785.6	7.07	2713.4	_0.56
OZ BST TRB DIFF	2487.0	783.6	7.67	2713.4	0.56
HZ TANK PRESS		806.4	0.8074	2740.0	.0044
GOX HEAT EXCH IN		791.1	7.44	2740.0	0.55
GOX HEAT EXCH OU		790.8	7.44	2738.7	0.55
HOT REGEN IN	2462.2	790.8	7.44	2738.7	0.55
HOT REGEN EX	2386.3	614.6	7.44	2111.9	0.67
FSOV INLET	2388.3	614.6	7.44	2111.9	0.67
FSOV EXIT	2328.6	614.9	7.44	2111.9	0.66
CHAMBER INJ	2305.3	615.0	7.44	2111.9	0.65
CHAMBER	2144.3				
	• 0XY0	EN SYSTEM	COMDITIONS	. •	
STATION	PRESS	TEMP	FLOM	ENTHALPY	DEHSITY
B.P. INLET	16.0	162.7	44.7	61.9	70.99
B.P. EXIT	135.2	165.3	44.7	42.3	70.84
PUMP INLET	135.2	165.3	44.7	62.3	70.84
PUMP EXIT	3472.7	181.0	44.7	73.9	71.48
OZ TANK PRESS		400.0	0.076	204.7	0.12
OSOV INLET	3438.0	161.1	6.7	73.9	71.43
OSOV EXIT	2406.6	185.3	6.7	73.9	69.85
OCV INLET	3438.0	181.1	37.9	73.9	71.43
OCV EXIT	2406.6	185.3	37.9	73.9	69.85
CHAMBER INJ	2382.5	185.4	44.6	73.9	69.82
CHAMBER	2144.3				
		VALVE DA	TA #		
VALVE	DELTA P		FLOH	& EYPASS	
TBV	3108.	0.01	0.37	5.00	
FSOV	60.	1.71	7.44		
OCV	1031.	0.21	44.63		
	•	INJECTOR	DATA .		
INJECTOR	DELTA P	AREA	FLOH		
FUEL	161.	1.09	7.44		
LOX	230.	0.52			

TABLE A-4. — FULL EXPANDER WITH REGENERATOR—30-PERCENT ENHANCEMENT (CONTINUED) - TURBOHACHINERY PERFORMANCE DATA -

	ERY PERFORMANCE DATA .
4416488100044004400	******************************
# H2 BODST TURBINE #	* HZ BOOST PUMP *
**************	4444444444
EFFICIENCY (T/T) 0.811	EFFICIENCY 0.766
EFFICIENCY (T/S) 0.400	HORSEPOWER 47. SPEED (RPH) 41201.
SPEED (RPH) 41201. MEAN DIA (IN) 1.44	SPEED (RPH) 41201. S SPEED 3052.
MEAN DIA (IN) 1.44 EFF AREA (IN2) 3.10	HEAD (FT) 2680.
U/C (ACTUAL) 0.532	MEAD (FT) 2488. DIA. (IN) 2.45
MAX TIP SPEED 381.	TIP SPEED 438.
STAGES 1	VOL. FLON 761.
GAPPIA 1.37 PRESS RATIO (T/T) 1.01	HEAD COEF 0.450 FLOW COEF 0.201
PRESS RATIO (T/T) 1.01 PRESS RATIO (T/S) 1.02	7 CON COEP 4.201
HORSEPOHER 47.	
EXIT HACH NUMBER 0.10	
SPECIFIC SPEED 149.84	
SPECIFIC DIAMETER 0.51	
*********	9000000
* HZ TURBINE *	# 1/2 PUIP #
***********	**********
	STAGE ONE STAGE THO STAGE THREE
EFFICIENCY (T/T) 0.847	EFFICIENCY 8.658 4.659 8.659
EFFICIENCY (T/S) 0.825	HORSEPOHER 1531. 1505. 1482.
SPEED (RPH) 125000.	SPEED (RPH) 125000. 125000. 125000.
HORSEPCHER 4518.	SS SPEED 11382.
EFFICIENCY (T/S) 0.025 SPEED (RPM) 125000. HORSEPONER 4518. HEAN DIA. (IM) 3.29 EFF AREA (IM2) 0.30 U/C (ACTUAL) 0.533	- 3 or CEU 765, 768, 769, HEAD (FT) 74412, 74345, 73066
U/C (ACTUAL) 0.533	### ##################################
MAX TIP SPEED 1890.	DIA. (IN) 3.65 3.84 3.85 TIP SPEED 2899. 2098. 2099.
STAGES 2	VOL. FLON 759, 748, 732, HEAD COEF 0.543 0.535 0.527
EFF AREA (1N2) 0.30 U/C (ACTUAL) 0.533 MAX TIP SPEED 1890. STAGES 2 GAMMA 1.37 PRESS RATIO (1/T) 1.93 PRESS RATIO (1/S) 1.97 EXIT MACH MUMBER 0.15	HEAD COEF 0.543 0.535 0.527 FLOH COEF 0.094
PRESS RATIO (1/5) 1.97	DIAMETER RATIO 0.528
EXIT MACH NUMBER 0.15 SPECIFIC SPEED 41.14	BEARING IN 3.80E+86
	SHAFT DIAMETER 24.00
SPECIFIC DIAMETER 1.86	
***************************************	******************
. 02 BOOST TURBINE .	• Q2 BOOST PUPP •

EFFICIENCY (T/T) 0.876	EFFICIENCY 0.764
EFFICIENCY (T/S) 0.727	HORSEPONER 26.
SPEED (RPH) 11044. MEAN DIA (IN) 4.11	SPEED (RPM) 11844. S SPEED 3826.
EFF AREA (IN2) 4.45	
U/C (ACTUAL) 0.552	HEAD (FT) 242. DIA. (IN) 2.73
MAX TIP SPEED 235.	TEP SPEED 152.
STAGES 1 GAMMA 1.37	VOL. FLON 285.
PRESS RATIO (T/T) 1.00	HEAD COEF 0.456 FLOW COEF 0.200
PRESS RATIO (T/S) 1.00	· (cm cas
HORSEPOHER 24.	
EXIT MACH HUMBER 0.03	
SPECIFIC SPEED 100.00 SPECIFIC DIAMETER 0.85	
SPECIFIC DIAMETER 0.85	
404450484444	*********
. 02 TURBINE .	# 02 PUSP #
************	***************************************
EFFICIENCY (T/T) 0.857 EFFICIENCY (T/S) 0.807	EFFICIENCY 0.745
SPEED (RPH) 73416.	HORSEPOLEN 734. SPEED (RPH) 73416.
HORSEPOHER 734.	SS SPEED 24400.
MEAN DIA (IN) 3.29	S SPEED 1657.
EFF AREA (IN2) 0.46	HEAD (FT) 6721. Dia. (IN) 2.19
U/C (ACTUAL) 0.550 MAX TIP SPEED 1111.	DIA. (IN) 2.19 TIP SPEED 701.
STAGES 1	VOL. FLOM 281.
GAPPIA 1.37	HEAD COEF 0.440
PRESS RATIO (T/T) 1.10	FLOM COEF 8.147
PRESS RATIO (1/5) 1.11 EXIT MACH MUMBER 0.09 SPECIFIC SPEED 43.72	DIAMETER RATIO 0.677
EXIT MACH NUMBER 0.09	BEARING DN 1.47E+06
SPECIFIC SPEED 43.72 SPECIFIC DIAMETER 1.82	SMAFT DIAMETER 20.00
5. Con 10 Direction 1100	
KEGENERATOR DAT	
* *************************************	
COLD SIDE MOT SI DELP 68.27 73.1	
DELP 68.27 73. DELT 162.10 -176.	
AREA 0.46 1.	
FLOM 7.45 7.	
EFFECTIVENESS 0.27	
NTU 0.38	A-10
CRATIO 0.92 CHIN 26.45	
CMIN 26.45 PFGEN Q 4662.17	

TABLE A-5. — SPLIT EXPANDER—50-PERCENT JACKET BYPASS/30-PERCENT ENHANCEMENT

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1755.7
VAC ENGINE THRUST	25808.
TURBINE PRESSURE RATIO	2.22
TOTAL ENGINE FLOH RATE	52.00
DEL. VAC. ISP	486.1
THROAT AREA	6.97
MOZZLE AREA RATIO	1000.0
MOZZLE EXIT DIAMETER	94.18
ENGINE MIXTURE RATIO	6.00
ETA C=	0.995
CHAMBER COOLANT DP	539.
CHAMBER COOLANT DT	1010.
NOZZLE/CHAMBER O	13002

	*****		*******	***	
	= FUE	. SYSTEN CO	MDITIONS =		
STATION	PRESS	TEMP	FLON	EKTHALPY	DENSITY
B.P. INLET	18.6	37.4	7.45	-147.5	4.37
B.P. EXIT	101.0	38.5	7.45	-145.0	4.39
PUMP INLET			7.45	-105.0	4.39
IST STAGE EXIT	2371.6	71.5	7.45	€2.0	4.41
JBV INLET	2324.2	71.9	3.73	42.0	4.38
SOT EXIT	17/3.3	74.0	5.75	€2.0	4.15
2ND STAGE EXIT	3876.7	94.2	3.72	142.4	4.41
PUP EXIT	5350.3	94.2 115.7 116.1 1125.9 1126.2 1145.2	3.72	239.8	4.44
COOLANT INLET	5296.8	116.1	3.72	239.8	4.42
COOLANT EXIT	4758.0	1125.9	3.72	3971.6	0.72
TBV INLET	4710.4	1126.2	Q.19	3971.6	4.71
THY EXIT	2069.7	1145.2	0.19	3971.6	1.32
02 TRB INLET	4718.4	1126.2	3.53	3971.6	0.71
or 140 CM11			3.33	3852.8	0.45
HE TRB INLET	4139.8	1096.5	3.53	3852.8	0.45
H2 TRE EXIT H2 TRE DIFFUSER H2 BST TRE IN H2 BST TRE OUT H2 BST TRE DIFF O2 BST TRE IN	2188.4	963.3	3.53	3339.2	6.40
HE TRE DIFFUSER	2166.5	963.4	3.53	2339.2	0.40
HZ BST TRB IN	2144.8	963.4	3.51 3.51	3339.2	8.48
H2 BST TRB OUT	2120.1	961.0	3.53	3329.6	4.39
H2 BST TRB DIFF	2115.1	961.0	3.53	3329.6	9.39
OZ BST TRB IN	2094.0	961.2	3.53	3329.6	6.39
OZ BST TRB OUT	2080.9	757.8	3.53	2324.5	8.39
OZ BST TRB DIFF	2080.1	757.8	3.53	3324.5	0:39
H2 TANK PRESS	18.6	983.4	0.0061	3354.8	4.0036
C2 BST TRB DIFF C2 BST TRB DUFF C2 BST TRB DUFF H2 TANK PRESS GOX NEAT EXCH DUT HIXER HOT IN HIXER COLD IN	2069.7	969.1	3.71	3356.0	6.38
GOX HEAT ENCH OUT	2059.3	968.4	3.71	3354.1	4.38
MIXER HOT IN	2059.3	968.4	3.71	3354.1	0.38
				42.0	4.15
	1956.4	502.3	7.44	1695.5	8.68
FSOV INLET	1956.4	502.3	7.44	1695.5	1.68
	1907.5	502.5	7.44	1695.5	8.66
	1888.4	502.6	7.44	1695.5	4.65
CHAMBER	1755.7				
STATION	20000	CEN SYSTEM	COMBITIONS		
B.P. INLET	PRESS	TEMP	PLON	ENTHALPY	VTISHED
B.P. EXIT	16.0	162.7	44.7	41.9	70.99
PUMP INLET	135.2	165.3	44.7	62.3	70.04
PUP EXIT	135.2	165.3	44.7	62.5	70.84
And Exti	2843.4	178.0	44.7	71.7	71.38
OCCUPANT PRESS	16.0	400.0	0.0/6	204.7	6.1?
02 TANK PRESS 0SOV THLET	2814.9	162.7 165.3 165.3 170.0 400.0 170.1	6.7	71.7	71.34
		161.4			70.63
	2814.9	178.1	\$7.9	71.7	71.34
	1970.4	181.4	37.9	71.7	70.03
	1950.7	181.5	44.6	71.7	69.99
CHAMBER	1755.7				
	•	VALVE DAT	'A •		
VALVE	DELTA P	400.	E 2		
18V			FLOM	R BYPASS	
184	349. 2641.	0.14	3.73	50.04	
FSOV	2641. 49.		0.19 7.44	5.04	
0CA F20A	844.	1.89			
~ ₹	5 ° ° .	0.23	*4.04		
. INJECTOR DATA .					
INJECTOR	DELTA P	AREA	FLOH		
FUEL	133.				
LOX	195.	1.20 0.57	46.44		
	.72,	4.37			

TABLE A-5. — SPLIT EXPANDER—50-PERCENT JACKET BYPASS/30-PERCENT ENHANCEMENT (CONTINUED)

		,
	MINERY PERFORMANCE DATA #	

************	****	
* HZ BOOST TURBINE *	# HZ BOOST P	
EFFICIENCY (T/T) 0.875	EFFICIENCY	0.765
EFFICIENCY (T/S) 0.487		49
SPEED (RPH) 41386.	SPEED (RPH)	
HEAN DIA (1N) 2.12		3044.
EFF AREA (IN2) 1.66	HEAD (FT)	2706.
U/C (ACTUAL) 0.553 MAX TIP SPEED 469.	DIA. (IN) TIP SPEED	2.43 440.
STAGES 1	VOL. FLOH	761.
GAPPIA 1.42	HEAD COEF	0.450
PRESS RATIO (T/T) 1.01	FLOH COEF	0.201
PRESS RATIO (T/S) 1.01 HORSEPOHER 48.		
EXIT MACH HUMBER 8.66		
SPECIFIC SPEED 113.87		
SPECIFIC DIAMETER 0.76		

# H2 TURBINE #	a H2 PUMP	
*****	26322222	
		STAGE THO STAGE THREE

EFFICIENCY (T/T) 0.819 EFFICIENCY (T/S) 0.804		
SPEED (RPH) 125000.	SPEED (RPH) 125000.	529. 512. 125000. 125000.
HORSEPOHER 2548.		123000. 123000.
MEAN DIA. (IN) 3.11	S SPEED 765.	777 7/0
EFF AREA (1M2) 0.20 U/C (ACTUAL) 0.473 MAX TIP SPEED 1772.	HEAD (FT) 74265.	49178. 47956.
U/C (ACTUAL) 0.473	DIA. (IM) 3.84 TIP \$PED 2097.	3.20 3.20
STAGES 2	TIP SPEED 2097, VOL. FLOM 758,	1745. 1746. 379. 376.
GAHHA 1.42	HEAD COEF 0.543	0.519 0.506
PRESS RATIO (T/T) 1.89		
PRESS RATIO (T/S) 1.92		
EXIT MACH NUMBER 0.12 SPECIFIC SPEED 31.22	BEARING DN 3.00E+06 SHAFT DIAMETER 24.00	
SPECIFIC DIMETER 2.13	347 MACIER 24.00	
***************************************	***********	
# 02 BOOST TURBINE #	= 02 800 ST PL	
EFFICIENCY (T/T) 0.848	EFF1C1ENCY	
EFFICIENCY (T/S) 0.865	HORSEPOHER	26.
SPEED (RPH) I1043.	SPEED (RPM)	11043.
NEAN DIA (IN) 5.83 EFF AREA (IN2) 2.29	S SPEED	3026.
EFF AREA (1H2) 2.29 U/C (ACTUAL) 0.553	HEAD (FT) DIA. (IN)	242. 2.73
MAX TIP SPEED 302.	TIP SPEED	132.
STAGES 1	VOL. FLOH	283.
GANNA 1.42	HEAD COEF	0.450
PRESS RATIO (T/T) 1.61 PRESS RATIO (T/S) 1.61	FLOH COEF	0.200
HORSEPOHER 26.		
EXIT MACH HUMBER 0.03		
SPECIFIC SPEED 54.75		
SPECIFIC DIAMETER 1.49		
**********	*********	
. 02 TURBINE .	# 02 PUMP #	

EFFICIENCY (T/T) 0.844	EFFICIENCY	0.747
EFFICIENCY (T/S) 0.823	HORSEPOHER	594.
SPEED (RPM) 68177. HORSEPOHER 594.	SPEED (RPM) SS SPEED	68177. 22660.
MEAN DIA (IN) 3.11	2 SPEED	1800.
EFF AREA (IN2) 0.27	HEAD (FT)	5461.
U/C (ACTUAL) 0.536		2.16
MAX TIP SPEED 973.	TIP SPEED	642.
STAGES 2 GAMMA . 1.42	VOL. FLOH HEAD COEF	281. 0.426
PRESS RATIO (T/T) 1.14	FLOM COEF	0.424
PRESS RATIO (T/S) 1.14	DIAMETER RATIO	0.681
EXIT MACH NUMBER 0.07	BEARING DN	
SPECIFIC SPEED 40.57	SHAFT DIAMETER	20.00
SPECIFIC DIMETER 1.90		

TABLE A-6. — SPLIT EXPANDER—50-PERCENT JACKET BYPASS/30-PERCENT ENHANCEMENT—150 TUBES

ENGINE PERFORMANCE PARAMETERS	
*************************	•

CHAMBER PRESSURE	1757.3
VAC ENGINE THRUST	25000.
TURBINE PRESSURE RATIO	2.22
TOTAL ENGINE FLON RATE	52.08
DEL. VAC. ISP	480.1
THROAT AREA	6.96
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	94.14
ENGINE MIXTURE RATIO	6.00
ETA C.	0.993
CHANGER COOLANT DP	481.
CHAMBER COOLANT DT	1004.
NOZZLE/CHAMBER Q	13814.

	*******	********			
	· FUEL	SYSTEM C	* ZMOITIONS		
STATION	PRESS	TEMP	FLOH	ENTHALPY	DEHSITY
B.P. INLET	18.6	37.4	7.45	-107.5	4.37
B.P. EXIT	100.7	38.5	7.45	-103.0	4.39
B.P. INLET B.P. EXIT PUNP INLET 1ST STAGE EXIT JBV INLET	100.7	38.5 38.5	7.45 7.45	-103.0	4.39
IST STAGE EXIT	2375_8	71.5	7.45	42.2	4.41
JBV INLET	2326.3	71.9	7 77	42.2	4.38
JBV EXIT 2ND STAGE EXIT PUMP EXIT COOLANT INLET COOLANT EXIT TBV INLET TBV EXIT	1977.4	74.7	3.73	42.2	4.15
2ND STAGE EXIT	3847.6	93.6	3.72	140.0	4.41
PUMP EXIT	5296.6	114.5	3.72	235.0	4.45
COOLANT INLET	5243.6	115.0	3.72 3.72	235.0	4.42
COOLANT EXIT	4762.4	1119.3	3.72	3948.4	0.72
TBV INLET	4714.7	1119.6	6.19	3948.4	0.71
TBV EXIT	2076.8	1138.5	0.19	3948.4	0.33
02 TRB INLET	4714.7	1119.6	3.53	3948.4	0.71
OZ TRB EXIT	4139.3	1089.8	3.53	3829.5	0.65
H2 TRB INLET	4139.3	1069.8	3.53	3829.5	0.45
H2 TRB EXIT	2189.6	958.0	3.53	3320.7	0.41
H2 TRB DIFFUSER	2167.8	958.1	3.53	3320.7	0.40
H2 BST TRB IN	2146.1	958.1	3.53	3320.7	0.40
H2 BST TRB OUT	2121.5	955.7	3.53	3311.1	0.40
TBV EXIT 72 TRB INLET 72 TRB EXIT 72 TRB EXIT 74 TRB INLET 75 TRB EXIT 76 TRB EXIT 77 TRB EXIT 77 TRB EXIT 78 E	2116.4	955.7	3.53	3311.1	9.39
OZ BST TRB IN	2095.2	955.9	3.53	3311.1	0.39
02 BST TRB OUT	2082.0	954.5	3.53	3306.0	0.39
02 BST TRB DIFF	2981.2	954.5	3.53	3306.0	0.39
HZ TANK PRESS	18.6	978.8	0.0061		0.0034
GOX HEAT EXCH IN	2070_8	963.8	3.71	3338.1 3338.1	0.38
GOX HEAT EXCH OU	T 2040.5	963.1	3.71	3335.4	0.38
MIXER HOT IN	2060-5	963.1	3.71	3335.4	0.38
MIXER COLD IN	1977.6	74.7	3.73	42.2	4.15
MIXER COLD IN MIXER OUT	1957.4	499.7	7.44	1686.2	0.68
FSOV INLET	1957.6	499.7	7.44 7.44 7.44	1686.2	0.68
FSOV EXIT	1906.5	499.9	7.44	1484.2	0.66
CHAMBER INJ	1889.4	500.0	7.44	1686.2	0.66
HIXER COLD IN HIXER OUT FSOV INLET FSOV EXIT CHAMBER INJ CHAMBER	1757.3	200.0			
	- 000	REN SYSTEM	CONDITIONS	S =	
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	44.7	61.9	70.99
B.P. EXIT	135.2	165.3	44.7	62.3	70.84
PUMP INLET	135.2	145.3	44.7	62.3	70.84
PUMP EXIT	2846.8	178.0	44.7	71.7	71.39
02 TANK PRESS	16.0	600 B	0.076	204.7	0.12
OSOV INLET	2817.4	178.2	6.7	71.7	71.34
OSOV EXIT	1972.5	181.4	6.7	71.7	70.02
STATION B.P. INLET B.P. EXIT PUMP INLET PUMP EXIT OZ TANK PRESS OSOV INLET OCV INLET OCV INLET OCV EXIT CHAMBER INJ CHAMBER	2817.4	178.2	\$7.9	71.7	71.34
OCV EXIT	1972 8	181.4	\$7.9	71 7	70.02
CHAMBER IN.	1952 4	181 5	46.6	71.7	
CHARRER	1757 8			****	•,,,,
		VALVE DA			
	DELTA P			% BYPASS	
JBV	349. 2644.	0.14	3.73	50.04	
TBV			0.19	5.00	
FSOV	49.	1.08	7.44		
OCV	8 45.	0.23	44.64		
" INJECTOR DATA "					
INJECTOR	DELTA P	AREA	FLON		
FUEL	152.				
LOX	195.	0.57	7.44 44.64		
	• • • • • • • • • • • • • • • • • • • •	7.2.	*****		

TABLE A-6. — SPLIT EXPANDER—50-PERCENT JACKET BYPASS/30-PERCENT ENHANCEMENT—150 TUBES (CONTINUED)

		,
	HINERY PERFORMANCE DATA	

" H2 BOOST TURBINE "	4 H2 BOOST F	
46666666666666666666666666666666666666	* N2 BOOS1 F	
EFFICIENCY (T/T) 0.8/3		
EFFICIENCY (T/S) 0.488		48.
SPEED (RPM) 41311.	SPEED (RPH)	41311.
MEAN DIA (IN) 2.12	S SPEED	3047.
EFF AREA (INZ) 1.65	HEAD (FT)	2695.
U/C (ACTUAL) 0.553	DIA. (IM)	
MAX TIP SPEED 468. STAGES 1		439. 761.
GAMMA 1.45	HEAD COEF	761. 0.450
PRESS RATIO (T/T) 1.01		6.201
PRESS RATIO (T/S) 1.01	, , , , ,	*****
HORSEPOHER 48.		
EXIT MACH NUMBER 0.06		
SPECIFIC SPEED 113.72		
SPECIFIC DIAMETER 0.76		
* H2 TURBINE *		
- 12 1005162 4	e H2 PURP	
		STAGE THO STAGE THREE
		21WE IN 21WE INCE
EFFICIENCY (T/T) 0.820	EFFICIENCY 0.658	0.633 0.636
EFFICIENCY (T/S) 0.805	HORSEPONER 1529.	515. 500 .
SPEED (RPH) 125000.	SPEED (RPH) 125000.	125000. 125000.
HORSEPOHER 2544.	SS SPEED 11337.	
HORSEPONER 2544. MEAN DIA. (IN) 3.11 EFF AREA (IN2) 0.20 U/C (ACTUAL) 0.475 MAY TIP SPEED	S SPEED 765.	748. 758.
EFF AREA (IN2) 0.20	HEAD (FT) 74353.	748. 758. 48203. 47039.
U/C (ACTUAL) 0.475	DIA. (IH) 3.84	3.17 \$.17
TOTAL TIP SPEED 1771.	117 37660 2076.	
STAGES 2 GAMMA 1.45	VOL. FLON 758. HEAD COEF 8.543	
PRESS RATIO (T/T) 1.89	FLOH COEF 6.8%	4.519 0.506
PRESS RATIO (T/S) 1.92	DIAMETER RATIO 0.328	
EXIT MACH NUMBER 0.12	BEARING DH 3.00E+06	
SPECIFIC SPEED 31.27	SHAFT DIAMETER 24.00	
SPECIFIC DIAMETER 2.14	•	
* 02 BOOST TURBINE *	= C2 BOOST PL	
EFFICIENCY (T/T) 0.868	EFFICIENCY	
EFFICIENCY (T/S) 0.803	HORSEPONER	26.
SPEED (RPH) 11043.	SPEED (RPH)	11043.
MEAN DIA (IN) S AT	S SPEED	3026.
EFF AREA (IN2) 2.28	HEAD (FT)	242.
TU/C - (ACTUAL) 0.553	DIA. (IN)	2.73
MAX TIP SPEED 302.	TIP SPEED	132.
STAGES 1	VOL. FLON	283.
GAMMA 1.45 PRESS RATIO (T/T) 1.01	HEAD COEF	0.450
PRESS RATIO (1/5) 1.01	FLOH COEF	0.200
HORSEPOHER 26.		
EXIT MACH MINISCO 0 00		
SPECIFIC SPEED 54.59		
SPECIFIC DIAMETER 1.49		
* 02 TURBINE *	= 02 PUP =	
***********	************	
EFFICIENCY (T/T) 0.845	EFFICIENCY	6.747
EFFICIENCY (T/S) 9.823 SPEED (RPH) 68204.	HORSEPOHER SPEED (RPH)	595.
		68204.
HORSEPOHER 595. MEAN DIA (IN) 3.11 EFF AREA (IN2) 0.27 M/C (ACTHAL) 0.514	SS SPEED S SPEED	22669. 1799.
EFF AREA (IN2) 0.27	HEAD (FT)	1777. 5466.
U/C (ACTUAL) 0.536	DIA. (IH)	2.16
MAX TIP SPEED 973.	TIP SPEED	642.
STAGES 2	VOL. FLOH	281.
GAINIA 1.45	HEAD COEF	0.426
PRESS RATIO (T/T) 1.14	FLOH COEF	0.153
PRESS RATIO (T/S) 1.14	DIAMETER RATIO	0.681
EXIT MACH NUMBER 0.07	BEARING DN	
SPECIFIC SPEED 40.41	SHAFT DIAMETER	20.00
SPECIFIC DIAMETER 1.90		

TABLE A-7. — SPLIT EXPANDER—50-PERCENT JACKET BYPASS/30-PERCENT ENHANCEMENT—OPTIMUM TUBE GEOMETRY

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1758.7
VAC ENGINE THRUST	25000.
TURBINE PRESSURE RATIO	2.26
TOTAL ENGINE FLOW RATE	52.08
DEL. VAC. ISP	480.1
THROAT AREA	6.95
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	94.10
ENGINE MIXTURE RATIO	6.00
ETA C+	0.993
CHAMBER COOLANT DP	388.
CHAMBER COOLANT DT	982.
NOZZLE/CHAMBER Q	13529.

	*******		********		
	# FUEL	SYSTEM CO	* SHOITIGH		
STATION	PRESS	TEMP	FLON	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	7.45	-107.5	4.37
B.P. EXIT	100.5	38.5	7.45	-103.0	4.39
PUMP INLET	100.5	38.5	7.45	-103.0	4.39
1ST STAGE EXIT	2375.6	71.6	7.45	42.3	4.41
JBV INLET	2328.1	72.0	3.73	42.3	4.58
JBV EXIT	1978.9	74.7		42.3	4.15
2ND STAGE EXIT PUMP EXIT	3849.3	93.6	3.72	140.0	4.41
PUMP EXIT	5293.1		3.72	234.7	4.45
	5240.1	114.9	3.72	254.7	4.43
COOLANT EXIT	4851.7	1096.9	3.72	3871.6	0.75
TBV INLET	4803.2	1097.1	0.19	3871.6	0.74
TBV EXIT 02 TRB INLET	4803.2 2072.5 4803.2 4204.3 4204.3	1110.5	0.19	3871.6	0.33
OZ TRB INCE	4803.2	1097.1	3.53	3871.6	0.74
H2 TRB INLET	4204.5	1067.4	3.53	3752.5	0.67
H2 TRB EXIT	2192.5	935.9	3.53	3752.5	0.67
H2 TRB DIFFUSER	2172.3	936.0	3.53 3.53	3243. 8 3243.8	0.42
M2 BCT TOR TH	2160 2	936.0	3.53	3243.8 3243.8	0.41 0.41
H2 BST TRB OUT	2123.4	933.6	3.53	3234.3	0.40
H2 BST TRB DUT H2 BST TRB DIFF	2118.4			3234.3	0.40
OZ BST TRB IN OZ BST TRB OUT	2097.2	933.8	3.53	3234.3	0.40
02 BST TRB OUT	2083.7	933.8 932.4 932.4	3.53	3229.1	0.40
O2 BST TRB DIFF	2082.9	932.4	3.53	3229.1	0.40
LM TALK BOTCO	10 /	***	0.0062	3261.3	0.0037
GOX HEAT EXCH IN GOX HEAT EXCH OUT HIXER HOT IN	2072.5	941.7	3.71	5261.3	0.39
GOX HEAT EXCH OUT	2062.1	941.0	3.71	3258.5	0.39
MIXER HOT IN	2062.1	941.0	3.71	3258.5	0.39
DIVEK COCD IM	17/8.7		3.73	42.3	4.15
MIXER OUT	1959.0 1959.0	489.2	7.44	1647.9	0.69
FSOV INLET			7.44	1647.9	0.69
FSOV EXIT	1910.0	489.4	7.44	1647.9	0.68
	1890.9	489.5	7.44	1647.9	0.67
CHAMBER	1758.7				
	■ OXYG	EN SYSTEM	CONDITIONS	. •	
STATION	PRESS	TEMP	FLOH	ENTHA: PY	DENSITY
B.P. INLET	16.0		44.7	61.9	70.99
B.P. EXIT	135.2	165.3 165.3	44.7	62.5	70.84
PUMP INLET	135.2		44.7	62.3	70.84
PUMP EXIT	2848.2	178.1	44.7	71.7	71.39
OSOV INLET	2010.7	400.0	0.076	204.7	0.12
	2817.7	178.2	6.7	71.7	71.34
OCV INLET	1973.8 2819.7	181.5	6.7 37.9	71.7	70.02
OCV EXIT	1973.8	178.2 181.5	37.9	71.7	71.34
	1954.1	181.5	37.9 44.6	71.7 71.7	70.02
CHAMBER	1758.7	101.5	44.	71.7	69.99
	•	VALVE DA	TA -		
VALVE	DELTA P	AREA	FLON	% BYPASS	
JBV	349.	0.14	3.75	50.04	
TBV	2731.	0.01	0.19	5.00	
FSOV	49.	1.86	7.46		
OCV	846.	0.23	44.64		
		INJECTOR	DATA 4		
IN IECTOR	DC: To D	4054	.		
INJECTOR FUEL	DELTA P	AREA	FLOM		
LOX	132. 195.	1.18	7.66 44.66		
LUA	175.	U.3/	44.84		

TABLE A-7. — SPLIT EXPANDER—50-PERCENT JACKET BYPASS/30-PERCENT ENHANCEMENT—OPTIMUM TUBE GEOMETRY (CONTINUED)

	MACHINERY PERFORMANCE DATA =	
	MCULUCKA ACULOMONG DALK -	

# H2 BOOST TURBINE	# H2 B00\$T	PUMP 4

EFFICIENCY (T/T) 0.8		0.766
SPEED (RPM) 41266		48. 41266.
MEAN DIA (IN) 2.1		3049.
EFF AREA (IN2) 1.6	1 HEAD (FT)	
U/C (ACTUAL) 0.55		2.43
MAX TIP SPEED 466		438.
STAGES		761. 0.450
GAMMA 1.4 PRESS RATIO (T/T) 1.0	1 FLON COEF	0.201
PRESS RATIO (T/S) 1.0		
HORSEPOHER 48	I.	
EXIT MACH NUMBER 0.0		
SPECIFIC SPEED 112.6		
SPECIFIC DIAMETER 0.7	•	
* H2 TURBINE *	# H2 PUF	
*****	*******	
		E STAGE THO STAGE THREE

EFFICIENCY (T/T) 0.81 EFFICIENCY (T/S) 0.80		
SPEED (RPM) 125000		
HORSEPOHER 2544		125000. 125000.
MEAN DIA. (IN) 5.1	O S SPEED 764.	748. 760.
EFF AREA (IN2) 0.1	9 HEAD (FT) 74475	48132. 44935.
U/C (ACTUAL) 0.47	4 DIA. (IN) 3.85	3.17 3.17
MAX TIP SPEED 1766	=	
STAGES GAMMA 1.4	2	
PRESS RATIO (T/T) 1.9		
PRESS RATIO (T/S) 1.9		
EXIT MACH NUMBER 0.1		
SPECIFIC SPEED 30.9	2 SHAFT DIAMETER 24.00	1
SPECIFIC DIAMETER 2.1	6	

" OZ BOOST TURBINE "		

EFFICIENCY (T/T) 0.86		0.764
EFFICIENCY (T/S) 0.80		26.
SPEED (RPH) 11043 HEAN DIA (IN) 5.8	SPEED (RPM) S SPEED	
EFF AREA (IN2) 2.2		3026. 242.
U/C (ACTUAL) 0.55		
MAX TIP SPEED 302	. TIP SPEED	132.
STAGES GAMMA 1.4		283.
GAMMA 1.4 PRESS RATIO (T/T) 1.0	5 HEAD COEF 1 FLOW COEF	0.450 0.200
PRESS RATIO (T/S) 1.0		0.200
HORSEPOHER 26		
EXIT MACH NUMBER 0.0	3	
SPECIFIC SPEED 53.9		
SPECIFIC DIAMETER 1.5	1	
		••
" OZ TURBINE "	* 02 PUMP	•
**********	********	
EFFICIENCY (T/T) 0.84		0.747
EFFICIENCY (T/S) 0.82		595.
SPEED (RPM) 68227 HORSEPOHER 595		
MEAN 514 (144) 7 1		22677. 1 798.
EFF AREA (IN2) 0.2		
U/C (ACTUAL) 0.53		
MAX TIP SPEED 970	. TIP SPEED	643.
	2 VOL. FLOH	281.
GAMMA 1.4		0.426
PRESS RATIO (1/T) 1.1 PRESS RATIO (1/S) 1.1		0.153
EXIT MACH NUMBER 0.0		0.681 1.36E+06
SPECIFIC SPEED 39.6		
SPECIFIC DIAMETER 1.9		

TABLE A-8. — SPLIT EXPANDER—1560°R HOT-WALL TEMPERATURE LIMIT

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1701.4
VAC ENGINE THRUST	25000.
TURBINE PRESSURE RATIO	2.601
TOTAL ENGINE FLON RATE	52.08
DEL. VAC. ISP	480.1
THROAT AREA	7.19
HOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	45.66
ENGINE MIXTURE RATIO	6.00
ETA C.	0.993
CHAMBER COOLANT DP	436.
CHAMBER COOLANT DT	902.
NOZZLE/CHAMBER Q	12499.

	*******	*******	• • • • • • • • • • • • • • • • • • • •		
	• FUEL		* 2401110N		
STATION	PRESS	TEMP	FLOM	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	7.45	-107.5	4.37
B.P. EXIT	100.7	S# . 5	7.45	-103.0	4.39
PUMP INLET	100.7	38.5	7.45	-103.0	4.3*
IST STAGE EXIT		69.9	7.45	35.8	4.42
	2252.4	70.3	3.73	35.8	4.39
JBV EXIT	1914.5	73.0	3.73	35.8	4.17
2HD STAGE EXIT	4129.8	100.4	3.72	166.2	4.36
PUPP EXIT	5894.9	128.6	3.72	291.2	4.38
COOLANT INLET	5836.0	129.0	3.72	291.2	4.35
COOLANT EXIT	5399.8	1031.1	3.72	3650.9	0.87
PUMP EXIT COOLANT INLET COOLANT EXIT TBY INLET	5345.8	1031.4	0.19	3650.9	0.86
	200-11		0.19	3650.9	0.34
OZ TRO INLET	5345.8 4659.4	1031.4	3.53	3650.9	0.86
440 FRE 144 FT		1002.4	3.53	3535.9 3535.9	0.78 0.78
H2 TRB IMLET H2 TRB EXIT	4659.4	1002.4 859.5	3.53 3.53	2974.5	0.44
MY THE DISCUSSE	2128.3	857.6	3.53	2974.5	0.45
HZ TRB DIFFUSER HZ BST TRB IN HZ BST TRB OUT	2103.1	857.6	3.53	2974.5	0.43
MO BET THE OUT	2055 4		3.53	2964.9	0.43
MZ BST TOR DIFF	2050.5	857.3	3.53	2964.9	0.42
HZ BST TRB DIFF DZ BST TRB IN	2029.8	857.4	3.53	2964.9	0.42
		856.0	3.53	2959.8	0.42
OZ BST TRB DIFF	2014.8	856.0	3.53	2959.8	8.42
HZ TANK PRESS	10.6	878.8	3.53 3.53 0.0048 3.71 5.71	2994.3	0.0040
OOK HEAT EXCH IN		865.9	3.71	2994.3	0.41
GOX HEAT EXCH OUT	1994.7	065.1	\$.71	2991.6	0.41
HIKER HOT IN	1994.7	865.1	3.71	2991.6	0.41
HIXER COLD IN	1914.5	73.0	3.73	35.8	4.17
HIXER OUT	1894.9	452.6	7.44	1511.1	0.72
MIXER OUT FSOV IMLET FSOV EXIT	1894.9	452 *	7.44	1511.1	0.72
FSOV EXIT	1847.5	457 2	7.44	1511.1	0.71
CHAI SERMAN	1029.1	452.8	7.44	1511.1	0.70
CHAMBER	1701.4				
	• 0XV	GEN SYSTEM	CONDITIONS		
STATION	PRESS	TEMP	FLOM	ENTHALTY	DENSITY
B.P. INLET	16.0	162.7	44.7	61.9	70.99
B P FYIT	16.0 135.2	145.3	44.7	62.3	70.84
PUP INLET			44.7	62.3	70.84
PUP INLET PUP EXIT	2755.5	177.6	44.7	71.4	71.37
PUMP EXIT OZ TAME PRESS OSOV INLET OSOV EXIT	16.0	400.0	44.7 0.076	204.7	0.12
OSOV INLET	2728.0	177.7	6.7	71.4	71.33
OSOV EXIT	1909.6	180.9	6.7	71.4	70.05
OCV INLET	2728.0	177.7	37.9	71.4	71.33
OCV EXIT	1909.6	180.7	37.9	71.4	70.05
CHAMBER INJ	1890.5	191.5	44.5	71.4	70.02
CHTHBES	1701.4				
		· ANTAE DV.	TA -		
VALVE	DELTA P		FLOH	Y BYTASS	
JEV	358.	5.14	\$.75	50.04	
184	3341.	0.71	0.19	<.00	
FSOV	47.		1,44		
ncv	#1#.	5.03	54.54		
	•	Integral	PA14 -		
THUSCASE	DELTA P	TEEV	FLOM		
FIEL	128	1 19	2,44		
L^Y	187.	1 19	44.64		

TABLE A-8. — SPLIT EXPANDER—1560°R HOT-WALL TEMPERATURE LIMIT (CONTINUED)

	INERY PERFORMANCE DATA +
**************	9000000000000000
" HE BOOST TURBINE "	* 112 BOOST PUMP *
*******	44444444444444
EFFICIENCY (1/T) 0.874	EFFICIENCY 0.765
EFFICIENCY (T/S) 0.698	HORSEPOHER 48.
SPEED (RPM) 41328.	SPEED (RPH) 41328.
MEAN DIA (IN) 2.12	S SPEEN 3046.
HEAN DIA (IN) 2.12 EFF AREA (IN2) 1.53	HEAD (FT) 2698, DIA. (IN) 2,45
U/C (ACTUAL) 0.553	DIA. (IN) 2.45
MAX TIP SPEED 464.	TIP SPEED 439.
STAGES 1	VOL. FLOM 761.
GAMMA 1.37 PRESS RATIO (T/T) 1.01	HEAD COEF 0.450
PRESS NATIO (T/T) 1.01	FLOM COEF 0.201
PRESS RATIO (T/S) 1.02 HORSEPOMER 48.	
EXIT MACH MUMBER 0.06	
SPECIFIC SPEED 110.57	
SPECIFIC DIAMETER 0.78	
******	*********
* H2 TURBINE *	• H2 PUMP •
*****	40424
	STAGE ONE STAGE THO STAGE THREE
	******** ******* *******
EFFICIENCY (T/T) 0.805	EFFICIENCY 0.664 0.592 0.598 HORSEPONER 1463. 686. 658.
EFFICIENCY (T/S) 0.791	HORSEPONER 1463. 686. 658. SPEED (RPH) 125000. 125000. 125000.
SPEED (RPM) 125000. HORSEPCHER 2007.	
HORSEPCHER 2807. MEAN DIA. (IN) 3.16	SS SPEED 11329.
ELF AREA (IN2) 0.17	S SPEED 784. 637. 652. HEAD (FT) 71728. 60089. 58151.
U/C (ACTUAL) 0.456	
MAK TIP SPEED 1780.	DIA. (IN) 3.78 3.50 3.50 TIP SPEED 2065. 1913. 1913.
STAGES 2	VOL. FLOM 756. 383. 382.
GAPHA 1.57	HEAD COEF 0.541 0.528 0.511
PRESS RATIO (T/T) 2.19	FLOM COEF 0.0%
PRESS RATIO (T/S) 2.22	DIAMETER RATIO 0.333
EXIT MACH MUMBER 0.13 SPECIFIC SPEED 27.82	BEARING DN 3.00E+06
SPECIFIC SPEED 27.82	SHAFT DIANETER 24.00
SPECIFIC DIAMETER 2.28	

. 02 BOOST TURBINE .	# 02 BOOST PURP #
	665000000000000000000
EFFICIENCY (T/T) 0.867	
EFFICIENCY (T/S) 0.804	EFFICIENCY 0.764 HORSEPONER 26.
SPEED (RPH) 11045.	SPEED IRPM1 11045.
MEAN DIA (IN) 5.83	S SPEED 3026.
EFF AREA (IN2) 2.11	HEAD (FT) 242. DIA. (18) 2.75
U/C (ACTUAL) 0.553	
MAX TIP SPEED 301.	TIP SPEED 132.
STAGES [GAMMA },57	VOL. FLON 283.
PRESS RATIO (T/T) 1.01	MEAD COEF 0.450 FLOW COEF 0.200
PRESS RATIO (T/S) 1.01	FLOM CORF 0.200
HORSEPCHER 26.	
EVIT WATER INSMED	
SPECIFIC SPEED 52.60	
SPECIFIC DIAMETER 1.55	
**********	******
* CZ TURBINE *	# 05 title #

EFFICIENCY (T/T) 0.839	EFFICIENCY 0.747
EFFICIENCY (T/S) 0.818 SPEED (RPM) 67248.	HORSEPTIMER 575.
	SPEED IRPM1 67248.
	51 SPECT 22352.
EFF APEA (1H2) 0.22	S SPEED 1814. MEAD (FT) 5285.
U/C (ACTUAL) 0.542	
MAR TIP SPEED 461.	DIA. (1N) 2,15 TIP SPEED 432.
STAGES 2	VOL. FI.ON 281
GAP414 1.37	HEAD CHEF 0.426
PRESS PATIO (T/T) 1.15	FLOM CHEP 0.154
PRESS PATTO (T/S) 1.15	DIAMETER RATIO 0.682
EXIT MACH NUMBER 0.07	PEARING DO 1 14E-06
SPECIFIC SPEED 16.95	SHAFT FRAMETER 20.00
SPECIFIC DIMMETER 2,09	

TABLE A-8. — SPLIT EXPANDER—1560°R HOT-WALL TEMPERATURE LIMIT (CONTINUED)

" CHAMBER & NOZZLE HEAT TRANSFER "

.. CHAMPER DESIGN ..

CHAMBER MATL/TYPE	COPPER/TURUS AR
HDA (LBH/SEC). CHAMBER FLOW	3 72
DPIN (PSID). INLET DELTA P	28.65
DP (PSID). CHAMBER DELTA F	254.68
DPEX (PSID). EXIT DELTA P	75.32
DPT (PSID). TOTAL DELTA P	358.64
QTOT (BTU/S). HEAT TRANSFER	8907.83
DICH (R). DELTA TEMPERATURE	628.41
UTTH. ULTINATE TEHP MARGIN	104.48
PRYS, MAX STRESS RATIO	59.47
THOT. MAX HOT HALL TEMPERATE	RE 1553.45
UTTS. THROAT MAX TEMPERATURE	1170.62
ASP. ASPECT RATIO	1.50
ZI (IN). CHAMBER LENGTH	12.00
ARI. CONTRACTION RATIO	2.50
TH. NUMBER OF TUBES	120.00

TABLE A-9. — SPLIT EXPANDER—1660°R HOT-WALL TEMPERATURE LIMIT

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1757.5
VAC ENGINE THRUST	25000.
TURBINE PRESSURE RATIO	2.400
TOTAL ENGINE FLOW RATE	52.00
DEL. VAC. ISP	480.1
THROAT AREA	6.06
NOZZLE AREA RATIO	1000.0
HOZZLE EXIT DIAHETER	•4.13
ENGINE MIXTURE RATIO	6.00
ETA C+	0.993
CHAMBER COOK ANT DP	458.
CHAMBER COOLANT DT	960.
NOZZLE/CHAMBER O	13257

			CONDITIONS		
			****** -		
47.7.			P SHOTTIONS		
STATION	PHE22	TEMP	FLON	ENTHALPY	DENSITY
B.P. INLET	10.6	37.4	7.45	-107.5	4.37
B.P. EXIT	100.5	38 - 5	7.45	-103.0	4.39
PUMP INLET 1ST STAGE EXIT JBV INLET JBV EXIT 2ND STAGE EXIT PUMP EXIT COOL MATERIES	100.5	38 5	7.45	-103.0	4.59
157 STAGE EXIT	2374.1	71.5	7.45	42.2	4.41
JBV INLET	2326.6	71.9	7.45 3.73 3.73 3.72 3.72	42.2	4.38
TIX3 VEL	1977.4	74.7	3.73	42.2	4.15
2ND STAGE EXIT	4271.3	103.8	3.72	179.3	4.34
PUP EXIT	6096.5	133.3	3.72	310.6	4.36
COOLANT INCET	4035.5	133-8	3.72	310.6	4.54
COOLANT EXIT	5577.4	1093.6	3.72	3874.4	0.85
COOLANT IMET COOLANT EXIT TBV IMLET TBV EXIT OZ TRB IMLET OZ TRB EXIT HZ TRB IMLET HZ TRB EXIT HZ TRB DIFFUSER HZ BST TRB IM	5521.8	1094.0	0.19	3874.4	0.84
TBV EXIT	2070.7	1117.4	0.19	3874.4	0.33
OZ TRB INLEY	5521.8	1094.0	3.53	3874.4	0.84
OZ TRB EXIT	4828.1	1064.0	3.53	3755.5 3755.5	0.77
H2 TRB INLET	4828.1	1064.0	3.53	3755.5	0.77
H2 TRB EXIT	2196.6	913.9	3.53	3166.9	0.43
HZ TRO DIFFUSER	2169.5	914.0	3.53	3166.9	0.42
H2 BST TRB IN	2147.8	914.0	3.53	3166.9	0.42
H2 BST TRB OUT	2121.9	911.6	3.55	3157.4	0.41
H2 BST TRB DIFF	2116.9	911-7	3.53	3157.4	0.41
02 BST TRB IN	2095.0	911.8	1.51	\$157.4	0.41
02 BST TRB OUT	2081.9	910.4	3.53	3152.3	0.41
N2 TRB DIFFUSER N2 BST TRB IN N2 BST TRB DUT N2 BST TRB DIFF 02 BST TRB DUT 02 BST TRB DUT 02 BST TRB DUFF N2 TAMK PRESS GOX MEAT EXCH IN NIXER MOT IN NIXER COLD IN NIXER OUT FSOV IMLET	2081.1	910.4	3.53	3152.3	0.41
HZ TANK PRESS	18.4	954.0	0.0064	\$180.4	0.0037
GOX HEAT EXCH IN	2070.7	920.0	3.71	3188.4	0.40
GOX HEAT EXCH OUT	2060.4	920.1	3.71	3105.7	0.40
HIXER HOT IN	2060.6	920.1	3.71	3185.7	0.40
HIXER COLD IN	1977.6	76.7	1.75	42.2	4.15
MIXER OUT	1957.3	479.2	7.44	42.2 1611.4 1611.4 1611.4 1611.4	0.71
FSOV INLET	1957 1	479 2	7 44	1411.6	0.71
FSOV FX1T	1908 4	429 4	7.66	141: 4	0.69
CHANGER IN I	1000.1	478 8	7.44	1411.4	0.67
FSOV INLET FSOV EXIT CHARGER IN.J CHARGER	1767 6	4,4.3	7.44	1911.4	0.69
CI BC-	1737.3				
	• 0xv	GFN SYSTEM	CONDITIONS	: •	
STATION B.P. INLET B.P. EXIT PUPP INLET DZ TANK PRESS OSOV INLET OCV INLET OCV INLET	PRESS	TEMP	FLOM	FNTHAL PY	DEVSITY
B.P. INLET	16.0	162.7	44.7	61.9	70.99
B.P. FXIT	155.2	145 3	44 7	42.3	70.84
PUPP IM FT	155.2	145 3	44.7	42.3	70.84
PIPO FELT	2864 6	120.0	66.7	71.7	71.39
M2 TANK PRESS	14.0	(00.0	0.026	-04.7	0.12
OSCW IM ET	2017.0	110.0	0.070	204.7	71.34
OSOV EVIT	1077	176.4	• •	71.7	
OCY IN ET	2011.6	101.4	• • •	71.7	70.02
OCV EXIT	2017.7	178.4	37.9	/1./	71.34
OCA EXI.	1972.6	181.4	37.9 44.6	,,,,	70.02
CHUPSER INJ	1972.6 1952.8	191.5	44.6	71.7	ês es
CHTABES	1757.5				
		VALVE DA	TA -		
VALVE			.		
1BA Awia:	DEI, TA P	APEA	Բ <u>լ ՄԻ</u> 3.73	Y RYPASS	
	DEI, TA P 349. 3451.	0.14	3.73	50.04	
TBV FSCV	3451.	7.61	0.14	5.00	
0CA	#45.	n 23	64 64		
	•	to section 1	Pala -		
INCECTOR	DELTA F		£1.4m.		
ERET	UTLIAF	1257	F E (MA		
ros.	136.	1 17	1.44		
- ·	1,43	. 7.	,-, W-		

TABLE A-9. — SPLIT EXPANDER—1660°R HOT-WALL TEMPERATURE LIMIT (CONTINUED)

	INERY PERFORMANCE DATA -	
* H2 BOOST TURBINE *	* H2 ROOST P	
EFFICIENCY (T/T) 0.874	EFFICIENCY	0.766
EFFICIENCY (T/S) 0.694	HORSEPOHER	48.
SPEED (RPH) 41274.	SPEED (RCH)	41274.
HEAN DIA (IN) 2.12 EFF AREA (IN2) 1.57	S SPEED HEAD (FT)	5049. 2690.
U/C (ACTUAL) 0.553	DIA. (IN)	2.43
MAX TIP SPEED 465.	TIP SPEED	439.
STAGES 1	VOL. FLOH	761.
GANNA 1.43 PRESS RATIO (T/T) 1.01	HEAD COEF FLOH COEF	0.450 0.201
PRESS RATIO (T/S) 1.02	rear cher	0.201
HORSEPOHER 48.		
EXIT HACH NUMBER 0.06		
SPECIFIC SPEED 111.84 SPECIFIC DIAMETER 0.77		
5. 25. 55 51.52.1 <u>2</u>		
***************************************	44454959	
- H2 TURBINE -	* K2 PUIP	
	STAGE ONE	STAGE THO STAGE THREE
	******	*********
EFFICIENCY (T/T) 0.801 EFFICIENCY (T/S) 0.707	EFFICIENCY 0.658	
SPEED (RPH) 125000.	HORSEPONER 1530. SPEED (RPH) 125000.	722. 691. 125000. 125000.
HORSEPONER 2945.	SS SPEED 11352.	123000.
MEAH DIA. (IN) 3.15	S SPEED 764.	620. 635.
EFF AREA (IN2) 0.17 U/C (ACTUAL) 0.448		62500. 60411.
U/C (ACTUAL) 0.448 MAX TIP SPEED 1788.	DIA. (IH) 3.84 TIP SPEED 2098.	3.57 3.57 1949. 1949.
STAGES 2	VOL. FLON 759.	384. 383.
GAIGA 1.43	HEAD COEF 0.543	0.529 0.512
PRESS RATIO (T/T) 2.20 PRESS RATIO (T/S) 2.23	FLOM COEF 0.094 DIAMETER RATIO 0.328	
EXIT MACH NUMBER 0.13	DIAMETER RATIO 0.328 REARING DN 3.00E+06	
SPECIFIC SPEED 26.81	SHAFT DIAMETER 24.00	
SPECIFIC DIMETER 2.31		
	*******	****
# 02 BOOST TURBINE #	# 02 BOOST PL	
***	4*****	****
EFFICIENCY (T/T) 0.867	EFFICIENCY HORSEPOWER	0.764
SPEED (RPH) 11043.	HORSEPOMER SPEED (RPH)	
MEAN DIA (IN) 5.83	S SPEED	11043. 3026.
EFF AREA (1N2) 2.17	HEAD (FT)	242.
U/C (ACTUAL) 0.553	DIA. (IN)	2.73
MAX TIP SPEED 301. STAGES ;	TIP SPEED VOL. FLOM	132. 203.
GAPPIA 1.43	HEAD COEF	0.450
PRESS RATIO (T/T) 1.01	FLOH COFF	2.200
PRESS RATIO (T/S) 1.01 HORSEPOHER 26.		
HORSEPOWER 26. EXIT MACH NUMBER 0.03		
SPECIFIC SPEED 53.35		
SPECIFIC SPEED 53.35 SPECIFIC DIAMETER 1.53		
SPECIFIC SPEED 53.35 SPECIFIC DIAMETER 1.53	* Q2 FIMP *	
SPECIFIC SPEED 53.35 SPECIFIC DIAMETER 1.53	• 02 FUHP •	
SPECIFIC SPEED 53.35 SPECIFIC DIAMETER 1.53 ***OZ TURBINE 4 ***CEFFICIENCY (1/1) 0.829	• 02 FUMP •	0.747
SPECIFIC SPEED 53.35 SPECIFIC DIAMETER 1.53 * 02 TURBINE 4 ************************************	* 02 PUMP * EFFICIENCY HORSEFONER	595.
SPECIFIC SPEED 53.35 SPECIFIC DIAMETER 1.53 ***OZ TURBINE 4 ***CEFFICIENCY (1/1) 0.829	• 02 FUMP •	
### SPECIFIC SPEED 53.35	OZ PUMP • EFFICIENCY HORSEFONER SPEED (RPM) SS SPEED S SPEED	595. 6820°. 72671. 1799.
### SPECIFIC SPEED 53.35	* 02 PUMP * EFFICIENCY HORSEYNER SPEED SPEED SPEED HEAD (F1)	595. 68209. 22671. 1799. 5467.
**************************************	* 02 PUMP * EFFICIENCY HORSEYOMER SPEED S SPEED S SPEED HEAD (FT) DIA. (IN)	595. 69209. 22671. 1799. 5667. 2.16
**************************************	* 02 PUMP * EFFICIENCY HORSEYNER SPEED SPEED SPEED HEAD (F1)	595. 68209. 22671. 1799. 5467.
SPECIFIC SPEED 53.35 SPECIFIC DIAMETER 1.53 ***********************************	# 02 PUMP # EFFICIENCY HORSENNER SPEED (RPH) SS SPEED S SPEED HEAD (FT) DIA. (IN) LIP SPEED VOL. FLOM HEAD COEF	595. 68209. 22671. 1799. 5467. 2.16 642. 281. 9.426
SPECIFIC SPEED 53.35 SPECIFIC DIAMETER 1.53 ***********************************	# 02 PUMP # EFFICIENCY HORSEFONER SPEED (RPM) SS SPEED S SPEED HEAD (FT) DIA. (IN) 11P SPEED VOL. FLOM HEAD COEF FLOM COCF	595. 68209. 22671. 1799. 5667. 2.16 662. 281. 9.426 0.153
SPECIFIC SPEED 53.35 SPECIFIC DIAMETER 1.53 ***********************************	# 02 PUMP # EFFICIENCY HORSEMMER SPEED (RM) SS SPEED S SPEED HEAD (FT) DIA. (IN) TIP SMEED VOL. FLOM HEAD COEM FLOM COEM DIAMETER RATIO	595. 68209. 22671. 1799. 5467. 2.16 642. 281. 9.426
SPECIFIC SPEED 53.35 SPECIFIC DIAMETER 1.53 ***********************************	# 02 PUMP # EFFICIENCY HORSENWER SPEED (RPH) SS SPEED 3 SPEED 16A0 (FT) DIA. (IN) 11P SPEED VOL. FLOM HEAD COEF FLOM COEF DIAMETER RATIO	595. 68200. 22671. 1290. 5467. 2.16 642. 281. 0.426 0.153

TABLE A-9. — SPLIT EXPANDER—1660°R HOT-WALL TEMPERATURE LIMIT (CONTINUED)

- CHAMPER & NOZZLE HEAT TRANSFER -

** CHAMPER DESIGN **

CHAMBER MATL/TYPE	COPPER/TUBIL AR
NDA (LBM/SEC), CHAMPER FLOW	3.72
DPIN (PSID). INLET DELTA P	32.10
DP (PSID). CHAMBER DELTA P	259.12
DREK (PSID). EXIT DELTA P	86.68
DET (PSID). TOTAL DELTA F	377.90
QTOT (BTU/S). HEAT TRANSFER	9608.75
DTCH (R). DELTA TEMPERATURE	680.87
UTTH. ULTIMATE TEMP MARGIN	94.10
PRYS. MAX STRESS RATIO	60.47
THOT. MAX HOT HALL TEMPERATUR	RE 1601.81
UTTS. THROAT MAX TEMPERATURE	1077.79
ASP. ASPECT RATIO	1.50
ZI (IN), CHAMBER LENGTH	13.30
ARI. CONTRACTION RATIO	2.50
TN. NUMBER OF TUBES	120.00

TABLE A-10. — SPLIT EXPANDER—35-PERCENT BYPASS/18-PERCENT ENHANCEMENT—FOUR-STAGE PUMP

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1922.2
VAC ENGINE THRUST	2500C.
TURBINE PRESSURE RATIO	2.400
TOTAL ENGINE FLOW RATE	52.07
DEL. VAC. ISP	480.1
THROAT AREA	6.37
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	90.04
ENGINE MIXTURE RATIO	6.00
ETA C#	0.993
CHAMBER COOLANT DP	551.
CHAMBER COOLANT DT	839.
NOZZLE/CHAMBER Q	15186.

ENGINE STATION CONDITIONS

			CONDITIONS		
	. 5161	eveten cr	MDITIONS =		
STATION	PRESS	TEMP	FLOW	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	7.45	-107.5	4.37
B.P. EXIT	100.5	38.5	7.45	-103.0	4.39
PUMP INLET	100.5	38.5	7.45	-103.0	4.39
1ST STAGE EXIT	1339.4	55.2	7.45	-55.0	4.50
2ND STAGE EXIT	2596.5	67.4	7.45	36.8	4.59
JBV INLET	2544.5	67.9	2.60	36.8	4.56
JBV EXIT	2162.9	71.4	2.60	36.8	4.32
SRD STAGE EXIT	4486.0	95.5	4.85	160.7	4.56
PUMP EXIT	6361.0	121.5	4.85	281.1	4.60
COOLANT INLET	6297.4	122.0	4.85	281.1	4.57
COOLANT EXIT	5746.1	961.2	4.85	3413.3	0.98
TBV INLET	5468.4	961.5	0.24	3413.3	0.97
TBV EXIT	2265.0	984.0	0.24	3413.3	0.41
OZ TRB INLET	5488.4	961.5	4.61	3413.3	0.97
OZ TRB EXIT	4980.9	937.1	4.61	3313.1	0.88
02 TRB DIFF	4952.9	937.2	0.000	3313.1	98.0
1ST HZ TRB INLET	4853.8	937.7	4.61	3313.1	0.86
2ND H2 TRB INLET	3552.4	882.1	4.61	3087.0	0.69
H2 TRB EXIT	2422.2	816.8	4.61	2829.6	0.52
HZ TRB DIFFUSER	2368.6	817.1	4.61	2829.8	0.51
H2 BST TRB IN	2344.9	817.1	4.61	2829.8	0.51
H2 BST TRB OUT	2320.4	815.4	4.61	2822.5	0.50
H2 BST TRB DIFF	2313.4	815.4	4.61	2822.5	0.50
02 BST TRB IN	2290.2	815.6	4.61	2822.5	0.50
O2 BST TRB GUT	2277.4	814.5	4.61	2818.6	0.49
OZ BST TAB DIFF	2276.4	814.5	4.61	2818.6	0.49
H2 TANK PRESS	18.6	837.2	0.0072	2848.3	0.0042
GOX HEAT EXCH IN	2265.0	823.0	4.84	2848.3	0.49
GOX HEAT EXCH OUT	2253.7	822.5	4.84	2846.3	0.48
MIXER HOT IN	2253.7	822.5	4.84	2846.3	0.48
MIXER COLD IN	2162.9	71.4	2.60	36.8	4.32
MIXER OUT	2141.0	548.0	7.44	1865.1	0.68
FSOV INLET	2141.0	548.0	7.44	1865.1	0.68
FSOV EXIT	2087.5	548.2	7.44	1865.1	0.66
CHAMBER INJ	2066.6	548.3	7.44	1865.1	0.65
CHAMBER	1922.2				
			CONDITIONS		
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	44.7	61.9	70.99
B.P. EXIT	135.2	165.3	44.7	62.3	70.84
PUMP INLET	135.2	165.3	44.7	62.3	70.84
PUMP EXIT	\$113.0	179.3	44.7	72.7	71.43
OZ TANK PRESS	16.0	400.0	0.076	204.7	0.12
OSOV IMLET	3081.9	179.4	6.7	72.7	71.38
OSOV EXIT	2157.3	183.1	6.7	72.7	69.95
OCV IMLET	3081.9	179.4	37.9	72.7	71.38
OCV EXIT	2157.3	163.1	37.9	72.7	69.95
CHAMBER INJ	2135.8	183.2	44.6	72.7	69.92
CHAMBER	1922.2			. =	. /-

" VALVE DATA "

VALVE	DELTA P	AREA	FLOH	* BYPASS
JBV	382.	0.09	2.60	34.89
TBV	3424.	0.01	0.24	5.00
FSOV	54.	1.80	7.44	
ocv	925.	0.22	44.63	

. INJECTOR DATA .

INJECTOR	DELTA P	AREA	FLOW
FUEL	144.	1.14	7.44
COX	214.	0.55	44.63

2135.8 1922.2

OCV EXIT CHAMBER INJ CHAMBER

TABLE A-10. — SPLIT EXPANDER—35-PERCENT BYPASS/18-PERCENT ENHANCEMENT—FOUR-STAGE PUMP (CONTINUED)

- TIEDDONACE	**********					
	INERY PERFOR					

" HE BOOST TURBINE "		■ H2 BOOST F				

EFFICIENCY (T/T) 0.865		EFFICIENCY	0.766			
EFFICIENCY (T/S) 0.625		HORSEPOWER	48.			
SPEED (RPM) 41268. MEAN DIA (IN) 1.86		SPEED (RPM)	41268.			
MEAN DIA (IN) 1.86 EFF AREA (IN2) 1.91		S SPEED HEAD (FT)	3049. 2689.			
U/C (ACTUAL) 0.553		DIA. (IN)	2.43			
MAX TIP SPEED 429.		TIP SPEED	439.			
STAGES 1		VOL. FLOW	761.			
GAMMA 1.42		HEAD COEF	0.450			
PRESS RATIO (T/T) 1.01		FLOH COEF	0.201			
PRESS RATIC (T/S) 1.01						
HORSEPOHER 48.						
EXIT MACH NUMBER 0.07						
SPECIFIC SPEED 130.28						
SPECIFIC DIAMETER 0.66						
H2 TURBINES =		- 4) 0100				
- 12 ORBINES -		# H2 PUMP				
	TURBINE 2		STAGE 1	STAGE 2	STAGE 3	STAGE 4
********	*******			********		
EFFICIENCY (T/T) 0.821	0.817	EFFICIENCY	0.733	0.732	0.626	0.630
EFFICIENCY (T/S) 0.781	0.761	HORSEPOHER	737.	736.	850.	825.
SPEED (RPM) 125000.	125000.	SPEED (RPM)	125000.	125000.	125000.	125000.
HORSEPOHER 1473.	1676.	SS SPEED	11354.			
MEAN DIA. (IN) 2.64	2.64	S SPEED	1206.	1197.	709.	719.
EFF AREA (IN2) 0.23	0.29	HEAD (FT)	39940.	39800.	60397.	58949.
U/C (ACTUAL) 0.428	0.40	DIA. (IN)	2.95		3.51	3.51
MAX TIP SPEED 1510.	1524.	TIP SPEED	1610.	1610.	1918.	1918.
STAGES 1 GAMMA 1.42	1	VOL. FLON	743.	729.	477. 0.528	474. 0.515
PRESS RATIO (T/T) 1.37	1.42 1.47	HEAD COEF FLOH COEF	0.496 0.123	0.494	0.520	0.515
PRESS RATIO (T/S) 1.39	1.51	DIAMETER RATIO				
EXIT MACH NUMBER 0.14	0.18	BEARING DN				
SPECIFIC SPEED 29.82	31.10	SHAFT DIAMETER	24.00			
SPECIFIC DIAMETER 2.04	1.82					
- 02 20057 7122115 -		**********				
= 02 BOOST TURBINE =		# 02 800ST P				
EFFICIENCY (T/T) 0.875						
		FFFICIFNCV	0.766			
		EFFICIENCY HORSEPOWER	0.764 26.			
EFFICIENCY (T/S) 0.792 SPEED (RPH) 11043.		HORSEPOWER SPEED (RPM)	0.764 26. 11043.			
EFFICIENCY (T/S) 0.792		HORSEPOWER	26.			
EFFICIENCY (T/S) 0.792 SPEED (RPM) 11045. MEAN DIA (IN) 5.11 EFF AREA (IN2) 2.65		HORSEPOHER SPEED (RPM) S SPEED HEAD (FT)	26. 11043.			
EFFICIENCY (T/S) 0.792 SPEED (RPH) 11143. MEAN DIA (IN) 5.11 EFF AREA (IN2) 2.65 U/C (ACTUAL) 0.553		HORSEPOHER SPEED (RPM) S SPEED HEAD (FT) DIA. (IN)	26. 11043. 3026. 242. 2.73			
EFFICIENCY (T/S) 0.792 SPEED (RPM) 11U45. MEAN DIA (IN) 5.11 EFF AREA (IN2) 2.65 U/C (ACTUAL) 0.553 MAX TIP SPEED 271.		HORSEPOMER SPEED (RPM) S SPEED HEAD (FT) DIA. (IN) TIP SPEED	26. 11043. 3026. 242. 2.73 132.			
EFFICIENCY (T/S) 0.792 SPEED (RPM) 11045. MEAN DIA (1N) 5.11 EFF AREA (IN2) 2.65 U/C (ACTUAL) 0.553 MAX TIP SPEED 271. STAGES 1		HORSEPOHER SPEED (RPH) S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOH	26. 11043. 3026. 242. 2.73 132. 283.			
EFFICIENCY (T/S) 0.792 SPEED (RPM 11463. MEAN DIA (1N) 5.11 EFF AREA (IN2) 2.65 U/C (ACTUAL) 0.553 MAX TIP SPEED 271. STAGES 1 GAMMA 1.42		HORSEPOWER SPEED (RPM) S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF	26. 11043. 3026. 242. 2.73 132. 283. 0.450			
EFFICIENCY (T/S) 0.792 SPEED (RPM) 11U45. MEAN DIA (IN) 5.11 EFF AREA (IN2) 2.65 U/C (ACTUAL) 0.553 MAX TIP SPEED 271. STAGES 1 GAMMA 1.42 PRESS RATIO (T/T) 1.01		HORSEPOHER SPEED (RPH) S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOH	26. 11043. 3026. 242. 2.73 132. 283.			
### SPEED (T/S) 0.792 ### SPEED (RPM) 11U45. ### MEAN DIA (IN) 5.11 ### SPEED (ACTUAL) 0.553 ### MAX TIP SPEED 271. ### STAGES 1 ### GAMMA 1.42 ### PRESS RATIO (T/T) 1.01 ### PRESS RATIO (T/S) 1.01		HORSEPOWER SPEED (RPM) S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF	26. 11043. 3026. 242. 2.73 132. 283. 0.450			
EFFICIENCY (T/S) 0.792 SPEED (RPM) 11U45. MEAN DIA (IN) 5.11 EFF AREA (IN2) 2.65 U/C (ACTUAL) 0.553 MAX TIP SPEED 271. STAGES 1 GAMMA 1.42 PRESS RATIO (T/T) 1.01		HORSEPOWER SPEED (RPM) S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF	26. 11043. 3026. 242. 2.73 132. 283. 0.450			
EFFICIENCY (T/S) 0.792 SPEED (RPM) 11045. MEAN DIA (1N) 5.11 EFF AREA (IN2) 2.65 U/C (ACTUAL) 0.553 MAX TIP SPEED 271. STAGES 1 GAMMA 1.42 PRESS RATIO (T/T) 1.01 HORSEPOMER 26.		HORSEPOWER SPEED (RPM) S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF	26. 11043. 3026. 242. 2.73 132. 283. 0.450			
EFFICIENCY (T/S) 0.792 SPEED (RPM) 11045. MEAN DIA (IN) 5.11 EFF AREA (IN2) 2.65 U/C (ACTUAL) 0.553 MAX TIP SPEED 271. STAGES 1 GAMMA 1.42 PRESS RATIO (T/T) 1.01 PRESS RATIO (T/S) 1.01 HORSEPOMER 26. EXIT MACH NUMBER 0.03		HORSEPOWER SPEED (RPM) S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF	26. 11043. 3026. 242. 2.73 132. 283. 0.450			
### SPECIFIC DIAMETER SPECIFIC DIAMETER SPECIFIC DIAMETER SPECIFIC DIAMETER SPECIFIC DIAMETER SPECIFIC DIAMETER SPECIFIC DIAMETER SPECIFIC SPECIFIC DIAMETER SPECIFIC		HORSEPOHER SPEED (RPM) S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF	26. 11043. 5026. 242. 2.73 132. 283. 0.450			
### SPECIFIC SPECED (1.25) ### SPECED (RPM) 11045. ###		HORSEPOMER SPEED (RPM) S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF	26. 11043. 3026. 242. 2.73 132. 283. 0.450 0.200			
### 10.5 0.792 ### 10.7 0.792 ### 10.7 10.7 10.45. ### 10.7 10.5		HORSEPOHER SPEED (RPM) S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF	26. 11043. 3026. 242. 2.73 132. 283. 0.450 0.200			
EFFICIENCY (T/S) 0.792 SPEED (RPM) 11045. MEAN DIA (1N) 5.11 EFF AREA (IN2) 2.65 U/C (ACTUAL) 0.553 MAX TIP SPEED 271. STAGES 1 GAMMA 1.42 PRESS RATIO (T/T) 1.01 HORSEPONER 26. EXIT MACH NUMBER 0.03 SPECIFIC SPEED 66.42 SPECIFIC DIAMETER 1.25		HORSEPOHER SPEED (RPM) S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF	26. 11043. \$026. 242. 2.73 132. 283. 0.450 0.200			
### SPECIFIC CONTRACT ### SPECIFIC DIAMETER ### SPECIFIC DIAMETER ### SPECIFIC SPECIFIC DIAMETER ### SPECIFIC SPECIFIC DIAMETER ### SPECIFIC DIAMETER ### SPECIFIC SPECIFIC DIAMETER ### SPECIFIC DIAMETER ### SPECIFIC DIAMETER ### SPECIFIC SPECIFIC DIAMETER #### SPECIFIC DIAMETER		HORSEPOHER SPEED (RPM) S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOH COEF - 02 PUMP EFFICIENCY	26. 11043. 5026. 242. 2.73 132. 283. 0.450 0.200			
### 10.5 0.792 ### 10.5 0.792 ### 10.5 0.792 ### 10.5 0.792 ### 10.5 0.553 ### 10.5 0		HORSEPOHER SPEED (RPM) S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF	26. 11043. 3026. 242. 2.73. 132. 283. 0.450 0.200			
######################################		HORSEPOHER SPEED (RPM) S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF ***********************************	26. 11043. 3026. 242. 2.73 132. 283. 0.450 0.200			
### 10.50 0.792 ### 10.50 0.792 ### 10.50 0.792 ### 10.50 0.553 ### 10.50 0		HORSEPOHER SPEED (RPM) S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF FLOM COEF ###################################	26. 11043. 3026. 242. 2.73 132. 283. 0.450 0.200			
######################################		HORSEPOHER SPEED (RPM) S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF ***********************************	26. 11043. 3026. 242. 2.73 132. 283. 0.450 0.200			
######################################		HORSEPOHER SPEED (RPM) S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF FLOM COEF EFFICIENCY HORSEPOHER SPEED (RPM) SS SPEED S SPEED	26. 11043. 3026. 242. 2.73. 132. 283. 0.450 0.200			
### SPECIFIC		HORSEPOHER SPEED (RPM) S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF **O2 PUMP ***O2 PUMP ***O3 PUMP **O5 PUMP **	26. 11043. 3026. 242. 2.73. 132. 283. 0.450 0.200			
######################################		HORSEPOHER SPEED (RPM) S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF ***********************************	26. 11043. 3026. 242. 2.73. 132. 283. 0.450 0.200			
### ##################################		HORSEPOHER SPEED (RPM) S SPEED (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF ***********************************	26. 11043. 3026. 242. 2.73 132. 283. 0.450 0.200			
EFFICIENCY (T/S) 0.792 SPEED (RPM) 11045. MEAN DIA (1N) 5.11 EFF AREA (IN2) 2.65 U/C (ACTUAL) 0.553 MAX TIP SPEED 271. STAGES 1 GAMMA 1.42 PRESS RATIO (T/T) 1.01 HORSEPONER 26. EXIT MACH NUMBER 0.03 SPECIFIC SPEED 66.42 SPECIFIC DIAMETER 1.25 ***********************************		HORSEPOHER SPEED (RPM) S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLON COEF FLON COEF EFFICIENCY HORSEPOHER SPEED (RPM) SS SPEED S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLON COEF	26. 11043. 3026. 242. 2.73. 132. 283. 0.450 0.200			
### ##################################		HORSEPOHER SPEED (RPM) S SPEED (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF EFFICIENCY HORSEPOHER SPEED (RPM) SS SPEED S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF FLOM COEF FLOM COEF FLOM COEF FLOM COEF FLOM COEF	26. 11043. 3026. 242. 2.73. 132. 283. 0.450 0.200			
######################################		HORSEPOHER SPEED (RPM) S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF ***********************************	26. 11043. 3026. 242. 2.73 132. 283. 0.450 0.200			
### ##################################		HORSEPOHER SPEED (RPM) S SPEED (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF EFFICIENCY HORSEPOHER SPEED (RPM) SS SPEED S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF FLOM COEF FLOM COEF FLOM COEF FLOM COEF FLOM COEF	26. 11043. 3026. 242. 2.73 132. 283. 0.450 0.200			

TABLE A-10. — SPLIT EXPANDER—35-PERCENT BYPASS/18-PERCENT ENHANCEMENT—FOUR-STAGE PUMP (CONTINUED)

" CHAMBER & NOZZLE HEAT TRANSFER "

** CHAMBER DESIGN **

CHAMBER MATL/TYPE	COPPER/TUBULAR
WDA (LBH/SEC), CHAMBER FLOW	4.85
DPIN (PSID). INLET DELTA P	68.30
DP (PSID). CHAMBER DELTA F	266.23
DPEK (PSID). EXIT DELTA P	133.05
DPT (PSID). TOTAL DELTA P	467.57
QTOT (BTU/S). HEAT TRANSFER	11370.42
DTCH (R). DELTA TEMPERATURE	616.65
UTTH. ULTIMATE TEMP MARGIN	168.79
PRYS. MAX STRESS RATIO	61.11
THOT, MAX HOT WALL TEMPERATE	JRE 1459.87
UTTS. THROAT MAX TEMPERATURE	1050.54
ASP. ASPECT RATIO	5.00
ZI (IN), CHAMBER LENGTH	16.25
ARI. CONTRACTION RATIO	3.00
TN. NUMBER OF TUBES	120.00

TABLE A-11. — SPLIT EXPANDER—35-PERCENT BYPASS/30-PERCENT ENHANCEMENT—FOUR-STAGE PUMP

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	2049.6
VAC ENGINE THRUST	25000.
TURBINE PRESSURE RATIO	2.350
TOTAL ENGINE FLOW RATE	52.07
DEL. VAC. ISP	480.1
THROAT AREA	5.97
HOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	87.21
ENGINE HIXTURE RATIO	6.00
ETA C=	0.993
CHAMBER COOLANT DP	726.
CHAMBER COOLANT DT	946.
NOZZLE/CHAMBER Q	17011.

	* FUEL	SYSTEM CO	NDITIONS .			
STATION B.P. INLET B.P. EXIT PUMP INLET IST STAGE EXIT JBV INLET JBV INLET JBV EXIT SRD STAGE EXIT FUMP EXIT COOLANT INLET COOLANT INLET COOLANT INLET TBV EXIT C2 TRB EXIT C2 TRB EXIT C2 TRB INLET C3 TRB EXIT C4 TRB INLET TBV EXIT C5 TRB INLET TBV EXIT C5 TRB INLET TBV EXIT C6 TRB INLET TBV EXIT C7 TRB INLET TBV EXIT TBV E	PRESS	TEMP	FLON	ENTHALPY	DENSITY	
B.P. INLET	18.5	37.4	7.44	-107.5	4.37	
B.P. EXIT	100.9	38.5	7.44	-105.0	4.39	
PUMP INLET	100.9	38 - 5	7.44	-103.0	4.39	
IST STAGE EXIT	1426.1	54.5	7.44	-27.6	4.50	
ZND STAGE EXIT	2768.6	69.9	7.44	47.6	4.58	
JBV INCE!	2/13.2	70.4	2.60	47.6	4.55	
TOD STAGE EVIT	4762 2	74.0	2.60	47.6	4.31	
PIMP FXIT	6792 #	101.0	4.65	183.6 315.2	4.54 4.58	
COOLANT INLET	6724.9	130.0	4.85	315.2	4.55	
COOLANT EXIT	5999.1	1076.3	4.85	3822.7	0.92	
TBV INLET	5939.1	1076.6	0.24	3822.7	0.91	
TBV EXIT	2415.0	1100-1	0.24	3822.7	0.39	
OZ TRB INLET	5939.1	1076.6	4.61	3822.7	0.91	
O2 TRB EXIT	5230.3	1050.5	4.61	3715.4	0.83	
OZ TRB DIFF	5200.7	1050.6	0.000	3715.4 3715.4 3472.0 3190.4	0.83	
1ST H2 TRB INLET	5096.7	1051.3	4.61	3715.4	0.81	
2ND H2 TRB INLET	3770.5	790.4	4.61	3472.0	0.65	
MZ TRB EXIT	2585.8	918.0	4.61	3190.4	0.49	
M2 TKB DIFFUSER	2520.6	918.4	4.61	3190.4	0.48	
HO BOT TOB OUT	2475.4	918.4	4.61	3190.4	0.48	
H2 BST TOD DIE	24/2.0	916.6	4.61	3183.1	0.47	
OD BET TOD IN	2465.0	916.7	4.61	3163.1	0.47	
O2 BST TRR CUT	2440.3	715.0	6.61	3183. <u>1</u> 3179.1	0.47	
O2 BST TOR DIFE	2420.2	915.0	4.61	3179.1	0.47	
H2 BST TRB IN H2 BST TRB OUT H2 BST TRB DIFF O2 BST TRB OUT O2 BST TRB OUT O2 BST TRB DIFF H2 TANK PRESS GOX HEAT EXCH OUT MIXER HOT IN MIXER COLD IN MIXER COLD MIXER OUT	18.6	961.6	0.0063	3177.1	0.47 0.47 0.0037 0.46 0.46	
GOX HEAT EXCH IN	2415.0	925.1	4.R4	3211.3 3211.3	0.0037	
GOX HEAT EXCH OUT	2403.0	924.6	4.84	3209.2	0.46	
MIXER HOT IN	2403.0	924.6	4.84	3209.2	0.46	
MIXER COLD IN	2306.3	74.0	2.60	47.6	4.31	
MIXER OUT	2282.8	613.6	7.44	2106.3	0.65	
FSOV INLET	2282.8	613.6	7.44	2106.3 2106.3 2106.3	0.65	
FSOV EXIT	2225.7	613.9	7.44	2106.3	0.63	
CHAMBER INJ	2203.5	614.0	7.44	2106.3	0.62	
GOX MEAT EXCH OUT MIXER HOT IN MIXER COLD IN MIXER OUT FSOV INLET FSOV EXIT CHAMBER INJ CHAMBER	2049.6					
			COMPLETIONS	_		
STATION B.P. INLET B.P. EXIT PUMP INLET PUMP EXIT OZ TANK PRESS OSOV INLET OSOV EXIT OCV INLET OCV EXIT CHAMBER INJ CHAMBER	PRESS	TEMP	FLOW	FNTHAL PY	DENSITY	
B.P. INLET	16.0	162.7	44.7	61.9	70.99	
B.P. EXIT	135.2	165.3	44.7	62.3	70.84	
PUMP INLET	135.2	165.3	44.7	62.3	70.84	
PUMP EXIT	3319.3	180.5	44.7	78.4	71.46	
OZ TANK PRESS	16.0	400.0	0.076	204.7	0.12	
OSOV INLET	3286.1	180.4	6.7	73.4	71.41	
OSOV EXIT	2300.3	184.3	6.7	73.4	69.90	
OCV INCET	3286.1	160.4	37.9	73.4	71.41	
CHAMBED IN I	2300.3	184.3	37.9	73.4	69.90	
CHAMBER IND	20/9 /	184.4	44.8	/3.4	67.86	
CHANGEN	2047.8					
	•	VALVE DAT	TA #			
VALVE	DELTA P	APEA	FLOH	% BYPASS		
JBA	407. 3524.	0.0	2.60	34.86		
TBV	3524.	0.01	0.24 7.44	5.00		
FSOV	57.	1.79				
OCA	786.	0.21	44.43			
	•	INJECTOR C				
INJECTOR	DELTA P	AREA	FLOH 7,44			
FUEL	154.	1.14	7.44			
LOX	228.	1.14	44.63			

TABLE A-11. — SPLIT EXPANDER—35-PERCENT BYPASS/30-PERCENT ENHANCEMENT—FOUR-STAGE PUMP (CONTINUED)

		INERY PERFOR					

***********			********				
- H2 BOOST TU			# H2 800ST P				
- MS 80021 10			**********				
EFFICIENCY (T/T)			EFFICIENCY	0.765			
			HORSEPONER	48.			
EFFICIENCY (T/S)							
	41371.		SPEED (RPM)				
MEAN DIA (IN)			S SPEED	3044.			
EFF AREA (IN2)			HEAD (FT) DIA. (IN)	2703.			
U/C (ACTUAL)							
MAX TIP SPEED	433.		TIP SPEED	440.			
STAGES	1		VOL. FLOH	761.			
GAMMA	1.41		HEAD COEF	0.450			
PRESS RATIO (T/T)	1.01		FLOH COEF	0.201			
PRESS RATIO (T/S)	1.01						
HORSEPOHER	48.						
EXIT MACH NUMBER	0.07						
SPECIFIC SPEED	132.22						
SPECIFIC DIAMETER	0.65						
*******	••		*****				
# H2 TURBINES	•		# H2 PUMP	•			
**********	==						
1	TURBINE 1	TURBINE 2		STAGE 1	STAGE 2	STAGE 3	STAGE 4
•	*******	********					
EFFICIENCY (T/T)	0.015		EFFICIENCY	0.728	0.727	0.613	0.617
EFFICIENCY (T/S)	0.771			795.	792. 125000.	933.	903.
		125000.	HORSEPOHER SPEED (RPH)	125000.	125000.	125000.	125000.
HORSEPOHER	1587.		SS SPEED	11312.			
MEAN DIA. (IN)			S SPEED	1146.		673.	684.
EFF AREA (IN2)			HEAD (FT)	42722.			
U/C (ACTUAL)				3.03	3.03	3.63	
MAX TIP SPEED	1519.	1532.	TIP SPEED	1654.			
STAGES	1317.	1	VOL. FLOW	743.	729.	479.	
					0.500		
GAMMA	1.41		HEAD COEF	0.502	0.500	0.555	0.314
PRESS RATIO (T/T)			FLOW COEF	0.119			
PRESS RATIO (T/S)			DIAMETER RATIO				
EXIT MACH NUMBER		0.20	BEARING DN				
SPECIFIC SPEED	28.78	29.40	SHAFT DIAMETER	24.00			
SPECIFIC DIAMETER	2.03	1.83					
**********			*******				
* OZ BOOST TU	RBINE .		# 02 BOOST P				
************			********				
EFFICIENCY (T/T)			EFFICIENCY	0.764			
EFFICIENCY (T/S)	0.789		HORSEPOHER	26.			
SPEED (RPM)	11043.		SPEED (RPM)	11043.			
MEAN DIA (IN)	5.11		S SPEED	3026.			
EFF AREA (IN2)	2.80		HEAD (FT)	242.			
U/C (ACTUAL)	0.553		DIA. (IN)	2.73			
MAX TIP SPEED	272.		TIP SPEED	132.			
STAGES	1		VOL. FLOH	283.			
GAMMA	1.41		HEAD COEF	0.450			
PRESS RATIO (T/T)	1.01		FLOW COEF	0.200			
PRESS RATIO (T/S)	1.01						
HORSEPONER	26.						
EXIT MACH NUMBER	0.03						
SPECIFIC SPEED	68.10						
SPECIFIC DIAMETER	1.22						
**********	• .		********				
* 02 TURBINE	•		- O2 PUMP	•			
**********			********				
EFFICIENCY (T/T)	0.811		EFFICIENCY	0.745			
EFFICIENCY (T/S)			HORSEPOHER	699.			
SPEED (RPM)			SPEED (RPH)				
HORSEPONER	699.		SS SPEED	24004.			
MEAN DIA (IN)			S SPEED	1689.			
EFF AREA (IN2)			HEAD (FT)				
U/C (ACTUAL)			DIA. (IN)				
MAX TIP SPEED	708.		TIP SPEED	688 .			
LAW ITE SEEEN				281.			
ATACES.							
STAGES	2		VOL. FLOW				
GAMMA	1.41		HEAD COEF	0.436			
GAMMA PRESS RATIO (T/T)	2 1.41 1.14		HEAD COEF FLOH COEF	0.456 0.148			
GAMMA PRESS RATIO (T/T) PRESS RATIO (T/S)	2 1.41 1.14 1.14		HEAD COEF FLOH COEF DIAMETER RATIO	0.436 0.148 0.678			
GAMMA PRESS RATIO (T/T) PRESS RATIO (T/S) EXIT MACH NUMBER	2 1.41 1.14 1.14 0.09		HEAD COEF FLOH COEF DIAMETER RATIO BEARING DN	0.436 0.148 0.678 1.44E+06			
GAMMA PRESS RATIO (T/T) PRESS RATIO (T/S)	2 1.41 1.14 1.16 0.09 42.29		HEAD COEF FLOH COEF DIAMETER RATIO	0.436 0.148 0.678 1.44E+06			
GAMMA PRESS RATIO (T/T) PRESS RATIO (T/S) EXIT MACH NUMBER	2 1.41 1.14 1.16 0.09 42.29		HEAD COEF FLOH COEF DIAMETER RATIO BEARING DN	0.436 0.148 0.678 1.44E+06			

TABLE A-12. — SPLIT EXPANDER—50-PERCENT BYPASS/18-PERCENT ENHANCEMENT—FOUR-STAGE PUMP

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1916.6
VAC ENGINE THRUST	250 50.
TURBINE PRESSURE RATIO	2.400
TOTAL ENGINE FLON RATE	52.07
DEL. VAC. ISP	480.1
THROAT AREA	6.39
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	90.17
ENGINE MIXTURE RATIO	6.00
ETA C*	0.993
CHAMBER COOLANT DP	593.
CHAMBER COOLANT DT	1073.
NOZZLE/CHAMBER Q	14715.

_						_
*****	•	 	•			

STATION B.P. INLET B.P. EXIT PUMP INLET 1ST STAGE EXIT JBV INLET JBV EXIT JBV EXIT JBV EXIT JBV EXIT TRO STAGE EXIT PUMP EXIT COOLANT INLET COOLANT INLET COOLANT EXIT TBV EXIT OZ TRB INLET OZ TRB EXIT OZ TRB INLET OZ TRB EXIT OZ TRB EXIT OZ TRB EXIT DZ TRB INLET STAD TRB INLET STAD TRB INLET HZ TRB DIFF STAT TRB DIFF OZ BST TRB IN UZ BST TRB DIFF OZ BST TRB DIFF OZ BST TRB DIFF OZ BST TRB DIFF DZ BST TRB DIFF DZ BST TRB DIFF HZ TANK PRESS GON HEAT EXCH IN MIXER COLD IN MIXER OUT FSOV INLET FSOV EXIT CHAMBER STATION	* FUEL	SYSTEM CO	NDITIONS .			
STATION	PRESS	TEMP	FLOH	ENTHALPY -107.5	DENSITY	
B.P. INLET	18.6	\$7.4	7.44	-107.5	4.37	
B.P. EXIT	100.9	38.5	7.44	-103.0	4.39	
PURP INLET	100.9	38.5	7.44	-103.0	4.39	
151 STAGE EXIT	1335.6	53.1	7.44	-33.3	4.50	
ZMU STAGE EXTI	2588.7	67.3	7.44	36.3 36.3 36.3 173.5	4.59	
DA THEE!	2537.2	67.8	3.72	36.3	4.56	
TOD STAGE FYIT	4616 0	71.3	3.72	36.3	4.33 4.49	
PUMP EXIT	6386 2	129.2	3.72	304.7	4.49	
COOLANT INLET	6322.3	129.7	3.72	304.7	4.46	
COOLANT EXIT	5729.3	1202.3	3.72	4260.4	0.80	
TBV INLET	5672.0	1202.6	0.19	4260.4	0.79	
TBV EXIT	2258.5	1226.0	0.19	4260.4 4260.4 4260.4	0.33	
OZ TRB INLET	5672.0	1202.6	3.53	4260.4	0.70	
O2 TRB EXIT	4905.6	1170.2	3.53	4130.1	0.71	
OZ TRB DIFF	4864.4	1170.3	0.000	4130.1	0.71	
IST HE TRE INLET	4767.1	1170.8	3.53	4130.1	0.69	
AND ME IMPE	3374.5	1097.2	3.53	3836.6	0.54	
M2 TRB CALL	2413.8	1023.3	3.53	3554.1	0.42	
M2 BET TOD IN	2341.1	1025.7	3.55	4130.1 4130.1 4130.1 3836.6 3554.1 3554.1	0.41	
H2 BST TOR OUT	2812.2	1023.7	3.53 T ET	3544.5	0.41 0.40	
H2 BST TRR DIFF	2307.2	1021.5	3.55 ₹ 5₹	3544.5 8666 B	0.40	
OZ BST TRB IN	2284.1	1021.5	3.53	3544.5 3544.5	6.40	
OZ BST TRB OUT	2270.6	1020.1	3.53	3539.3	0.40	
OZ BST TRB DIFF	2269.8	1020.1	3.53	3539.3	0.40	
H2 TANK PRESS	18.6	1046.5	0.0057	3575.4 3575.4	0.0033	
GOX HEAT EXCH IN	2258.5	1030.5	3.71	3575.4	0.39	
GOX HEAT EXCH OUT	2247.2	1029.8	3.71	3572.7	0.39	
MIXER HOT IN	2247.2	1029.8	3.71	3572.7 3572.7	0.39	
MIXER COLD IN	2156.6	71.3	3.72	36.3	4.33	
MIXER OUT	2134.8	530.7	7.44	1802.0 1802.0	0.69	
FSOV INLET	2134.8	530.7	7.44	1802.0	0.69	
LZOA EXII	2081.5	530.9	7.44	1802.0 1802.0 1802.0	0.68	
CHAMBER INT	2060.6	531.0	7.44	1802.0	0.67	
CHANDER	1710.0					
STATION B.P. INLET B.P. EXIT PUMP INLET OZ TANK PRESS OSOV INLET OSOV EXIT OCV INLET OCV EXIT CHAMBER INJ CHAMBER	- OXY	EN SYSTEM	CONDITIONS	•		
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY	
B.P. INLET	16.0	162.7	44.7	61.9	70.99	
B.P. EXIT	135.2	165.3	44.7	62.3	70.84	
PUPP INLET	135.2	165.3	44.7	62.3	70.84	
PUMP EXIT	3103.9	179.3	44.7	72 6	71.43	
OZ TANK PRESS	16.0	400.0	0.076	204.7	0.12	
OZOA IMPEL	3072.9	179.4	6.7	72.6	71.38	
OCV IMET	2151.0	183.0	77.4	72.6	31.70	
OCV FREE	2151 0	105.0	37.7	72.4	71.30	
CHAMBER INJ	2129.5	163.1	44.6	72.6	49.92	
CHAMBER	1916.6				•	
	•	VALVE DAT	ra •			
VALVE	DELTA P	APEA	FLON	% BYPASS		
JBV	381.	0.13	3.72	50.03		
TBV	3414.	0.01	0.19	5.00		
FSOV	53.	1.78	7.44			
OCA	922.	0.22	44.43			
	•	INJECTOR (DATA .			
INJECTOR	DELTA P	AREA	FLON			
FUEL	144.	1.13	7.44			
FOX	144. 213.	0.55	FLOH 7.44 44.63			

TABLE A-12. — SPLIT EXPANDER—50-PERCENT BYPASS/18-PERCENT ENHANCEMENT—FOUR-STAGE PUMP (CONTINUED)

			RMANCE DATA .				
			CHANCE DATA *				
**********			********				
# H2 BOOST TUE	BINE .		# H2 BOOST				
*********			******				
EFFICIENCY (T/T)			EFFICIENCY	0.765			
EFFICIENCY (T/S)			HORSEPOHER	48.			
SPEED (RPM) MEAN DIA (IN)			SPEED (RPM)				
EFF AREA (IN2)			S SPEED HEAD (FT)				
U/C (ACTUAL)			HEAD (FT) DIA. (IN)	2705. 2.43			
MAK TIP SPEED	468.		TIP SPEED	440.			
STAGES	1		VOL. FLOH	761.			
GAMMA	1.39		HEAD COEF	0.450			
PRESS RATIO (T/T) PRESS RATIO (T/S)			FLON COEF	0.201			
HORSEPOHER	48.						
EXIT MACH NUMBER	0.06						
SPECIFIC SPEED	112.84						
SPECIFIC DIAMETER	0.76						
**********			*****				
# H2 TURBINES	•		# H2 PUHF				
		TURBINE 2		STAGE 1			
			EFF1C1FNcv	0.734	0 744		
EFFICIENCY (T/T) EFFICIENCY (T/S)	0.729	0.743	HORSEPONER	754.	733.	723.	690.
SPEED (RPM)	125000.	125000.	SPEED (RPM)	754. 125000.	125000.	125000.	125000.
HORSEPOHER	1467.	1413.	SS SPEED	11308.			
MEAN DIA. (IN) EFF AREA (IN2)	2.66	2.66	S SPEED	1209.	1200.	613.	
U/C (ACTUAL)	0.20	0.27	HEAD (FT) DIA. (IN)	37802.	37681.	62112.	59999.
MAK TIP SPEED	1513.	1528.	TIP SPEED	2.95 1608.	2.95 1608.		
STAGES	1	1	VOI ELOU	743.	728.	372.	
GAPPIA	1.39	1.39	HEAD COEF	0.495	0.494	0.528	0.510
PRESS RATIO (T/T)		1.41	FLON COEF	0.123			
PRESS RATIO (T/S) EXIT HACH NUMBER		1.45	DIAMETER RATIO	0.428			
SPECIFIC SPEED			BEARING DN SHAFT DIAMETER	3.00E • 06			
SPECIFIC DIAMETER		28.05 1.91	Store DiWHELEK	24.00			
SPECIFIC DIAMETER	2.20		SIMPL DIMPLEK	24.00			
SPECIFIC DIAMETER	2.20		********				
SPECIFIC DIAMETER	2.20 ****** BINE *		#4####################################	une =			
SPECIFIC DIAMETER * 02 800ST TUR ***********************************	2.20 ##### BINE # ###### 0.868	1.91	********	unann UMP =			
SPECIFIC DIAMETER **********************************	2.20 ******* BINE * ****** 0.868 0.804	1.91	# 02 BOOST P # 02 BOOST P ####################################	##### UMP # ##### 0.764 26.			
* 02 BOOST TUR EFFICIENCY (T/T) EFFICIENCY (T/S) SPEED (RPM)	2.20 ****** BINE * ***** 0.868 0.804 11043.	1.91	" 02 BOOST P ""	0.764 26.			
SPECIFIC DIAMETER * 02 800ST TUR * 02 800ST TUR ***********************************	2.20 ***********************************	1.91	" 02 BOOST P """ EFFICIENCY HORSEPOMER SPEED (RPM) S SPEED	UMP # ##### 0.764 26. 11043. 5026.			
* 02 BOOST TUR EFFICIENCY (T/T) EFFICIENCY (T/S) SPEED (RPM)	2.20 ******* ****** ****** 0.868 0.804 11043. 5.83 2.23	1.91	" 02 BOOST P """ EFFICIENCY HORSEPOMER SPEED (RPM) S SPEED	UMP # ##### 0.764 26. 11043. 5026.			
SPECIFIC DIAMETER OZ BOOST TUR EFFICIENCY (T/T) EFFICIENCY (T/S) SPEED (RPH) MEAN DIA (IN) EFF AREA (IN2)	2.20 ******* ****** ****** 0.868 0.804 11043. 5.83 2.23	1.91	" 02 BOOST P "WHITE TO THE TO	0.764 26. 11043. 3026. 242. 2.73			
SPECIFIC DIAMETER * 02 BOOST TUR * 02 BOOST TUR ***********************************	2.20 ***********************************	1.91	# 02 BOOST P ####################################	UMP # ##### 0.764 26. 11043. 5026.			
* 02 BOOST TUR * 02 BOOST TUR * 02 BOOST TUR * EFFICIENCY (T/T) EFFICIENCY (T/S) SPEED (RPM) MEAN DIA (IN) MEAN DIA (IN) MEFF AREA (IN2) U/C (ACTUAL) MAX TIP SPEED STAGES GAMMA	2.20 ***********************************	1.91	" 02 BOOST P """"""""""""""""""""""""""""""""""""	0.764 26. 11043. 3026. 242. 2.73 132. 283. 0.450			
* 02 BOOST TUR * 02 BOOST TUR EFFICIENCY (T/T) EFFICIENCY (T/S) SPEED (RPM) MEAN DIA (IN) EFF AREA (IN2) U/C (ACTUAL) MAX TIP SPEED STAGES GAMMA PRESS RATIO (T/T)	2.20 ***********************************	1.91	# 02 BOOST P ####################################	0.764 26. 11043. 3026. 242. 2.73 132. 283.			
* 02 BOOST TUR * 02 BOOST TUR * 02 BOOST TUR * EFFICIENCY (T/T) EFFICIENCY (T/S) SPEED (RPM) MEAN DIA (IN) MEAN DIA (IN) MEFF AREA (IN2) U/C (ACTUAL) MAX TIP SPEED STAGES GAMMA	2.20 ***********************************	1.91	" 02 BOOST P """"""""""""""""""""""""""""""""""""	0.764 26. 11043. 3026. 242. 2.73 132. 283. 0.450			
* 02 BOOST TUR * 02 BOOST TUR * 02 BOOST TUR * FFICIENCY (T/T) EFFICIENCY (T/S) SPEED (RPM) MEAN DIA (IN2) EFF AREA (IN2) U/C (ACTUAL) MAX TIP SPEED STAGES GAMMA PRESS RATIO (T/T) PRESS RATIO (T/S) HORSEPOMER EXIT HACH NUMBER	2.20 ***********************************	1.91	" 02 BOOST P """"""""""""""""""""""""""""""""""""	0.764 26. 11043. 3026. 242. 2.73 132. 283. 0.450			
SPECIFIC DIAMETER " 02 BOOST TUR " 12 BOOST TUR " 14 CONTROLL (T/T) SPEED (RPH) MEAN DIA (IN2) U/C (ACTUAL) MAX TIP SPEED STAGES GAMMA PRESS RATIO (T/T) PRESS RATIO (T/S) HORSEPOWER EXIT MACH NUMBER SPECIFIC SPEED	2.20 ***********************************	1.91	" 02 BOOST P """"""""""""""""""""""""""""""""""""	0.764 26. 11043. 3026. 242. 2.73 132. 283. 0.450			
* 02 BOOST TUR * 02 BOOST TUR * 02 BOOST TUR * FFICIENCY (T/T) EFFICIENCY (T/S) SPEED (RPM) MEAN DIA (IN2) EFF AREA (IN2) U/C (ACTUAL) MAX TIP SPEED STAGES GAMMA PRESS RATIO (T/T) PRESS RATIO (T/S) HORSEPOMER EXIT HACH NUMBER	2.20 ***********************************	1.91	" 02 BOOST P """"""""""""""""""""""""""""""""""""	0.764 26. 11043. 3026. 242. 2.73 132. 283. 0.450			
SPECIFIC DIAMETER " 02 BOOST TUR " 12 BOOST TUR " 14 CONTROLL (T/T) SPEED (RPH) MEAN DIA (IN2) U/C (ACTUAL) MAX TIP SPEED STAGES GAMMA PRESS RATIO (T/T) PRESS RATIO (T/S) HORSEPOWER EXIT MACH NUMBER SPECIFIC SPEED	2.20 ***********************************	1.91	" 02 BOOST P """"""""""""""""""""""""""""""""""""	0.764 26. 11043. 3024. 242. 2.73 132. 283. 0.450 0.200			
SPECIFIC DIAMETER OZ BOOST TUR EFFICIENCY (T/T) EFFICIENCY (T/T) EFFICIENCY (T/S) SPEED (RPH) MEAN DIA (IN) EFF AREA (IN2) U/C (ACTUAL) MAX TIP SPEED STAGES GAMMA PRESS RATIO (T/T) PRESS RATIO (T/T) HORSEPOMER EXIT MACH NUMBER SPECIFIC SPEED SPECIFIC SPEED SPECIFIC DIAMETER OZ TURBINE **	2.20 ***********************************	1.91	" 02 BOOST P """"""""""""""""""""""""""""""""""""	UMP = 26. 11043. 3026. 242. 2.73 132. 283. 0.450			
SPECIFIC DIAMETER * 02 BOOST TUR ***********************************	2.20 ***********************************	1.91	" 02 BOOST P ***********************************	0.764 26. 11043. 3026. 242. 2.73 132. 283. 0.450 0.200			
SPECIFIC DIAMETER * 02 BOOST TUR * 02 BOOST TUR * FFICIENCY (T/T) SPEED (RPM) MEAN DIA (IN) EFF AREA (IN2) U/C (ACTUAL) MAX TIP SPEED STAGES GAMMA PRESS RATIO (T/T) PRESS RATIO (T/T) PRESS RATIO (T/S) HORSEPOMER EXIT HACH NUMBER SPECIFIC SPEED SPECIFIC DIAMETER **********************************	2.20 ***********************************	1.91	" 02 BOOST P """"""""""""""""""""""""""""""""""""	UMP =			
SPECIFIC DIAMETER OZ BOOST TUR EFFICIENCY (T/T) EFFICIENCY (T/T) EFFICIENCY (T/S) SPEED (RPH) MEAN DIA (IN) EFF AREA (IN2) U/C (ACTUAL) MAX TIP SPEED STAGES GAMMA PRESS RATIO (T/T) PRESS RATIO (T/T) HORSEPOMER EXIT MACH NUMBER SPECIFIC SPEED SP	2.20 ***********************************	1.91	# 02 BOOST P ####################################	0.744 652.			
SPECIFIC DIAMETER * 02 BOOST TUR * 02 BOOST TUR * FFICIENCY (T/T) SPEED (RPM) MEAN DIA (IN) EFF AREA (IN2) U/C (ACTUAL) MAX TIP SPEED STAGES GAMMA PRESS RATIO (T/T) PRESS RATIO (T/T) PRESS RATIO (T/S) HORSEPOMER EXIT HACH NUMBER SPECIFIC SPEED SPECIFIC DIAMETER **********************************	2.20 ***********************************	1.91	" 02 BOOST P """"""""""""""""""""""""""""""""""""	0.744 652.			
SPECIFIC DIAMETER OZ BOOST TUR EFFICIENCY (T/T) EFFICIENCY (T/T) EFFICIENCY (T/T) SPEED (RPH) MEAN DIA (IN) EFF AREA (IN2) U/C (ACTUAL) MAX TIP SPEED STAGES GAMMA PRESS RATIO (T/T) PRESS RATIO (T/T) HORSEPOMER EXIT HACH NUMBER SPECIFIC SPEED SPECIFIC SPEED SPECIFIC SPEED SPECIFIC SPEED EFFICIENCY (T/T)	2.20 ***********************************	1.91	# 02 BOOST P ####################################	0.764 26. 11043. 3026. 242. 2.73 132. 283. 0.450 0.200			
SPECIFIC DIAMETER O2 BOOST TUR EFFICIENCY (T/T) EFFICIENCY (T/S) SPEED (RPM) MEAN DIA (IN) EFF AREA (IN2) U/C (ACTUAL) MAX TIP SPEED STAGES GAMMA PRESS RATIO (T/T) PRESS RATIO (T/S) HORSEPOMER EXIT MACH NUMBER SPECIFIC SPEED SPECIFIC DIAMETER O2 TURBINE	2.20 ***********************************	1.91	# 02 BOOST P ####################################	0.746 652.70496.2137,5983.			
SPECIFIC DIAMETER * 02 BOOST TUR * 02 BOOST TUR * 02 FFICIENCY (T/T) EFFICIENCY (T/S) SPEED (RPM) MEAN DIA (IN2) EFF AREA (IN2) U/C (ACTUAL) MAX TIP SPEED STAGES GAMMA PRESS RATIO (T/T) SPECIFIC SPEED SPECIFIC SPEED SPECIFIC SPEED **********************************	2.20 ***********************************	1.91	" 02 BOOST P """"""""""""""""""""""""""""""""""""	0.764 26. 11043. 3024. 242. 2.73 132. 283. 0.450 0.200			
SPECIFIC DIAMETER O2 BOOST TUR EFFICIENCY (T/T) EFFICIENCY (T/S) SPEED (RPM) MEAN DIA (IN) EFF AREA (IN2) U/C (ACTUAL) MAX TIP SPEED STAGES GAMMA PRESS RATIO (T/T) PRESS RATIO (T/S) HORSEPOMER EXIT MACH NUMBER SPECIFIC SPEED SPECIFIC DIAMETER O2 TURBINE	2.20 ***********************************	1.91	# 02 BOOST P ####################################	UMP =			
SPECIFIC DIAMETER OZ BOOST TUR SEFICIENCY (T/T) EFFICIENCY (T/T) EFFICIENCY (T/T) EFFICIENCY (T/T) SPEED (RPH) MEAN DIA (IN) EFF AREA (IN2) U/C (ACTUAL) MAX TIP SPEED STAGES GAMMA PRESS RATIO (T/T) PRESS RATIO (T/T) HORSEPOMER EXIT HACH NUMBER SPECIFIC SPEED SPECIFIC DIAMETER FFICIENCY (T/T) EFFICIENCY (T/T) EFFIC	2.20 ***********************************	1.91	" 02 BOOST P """"""""""""""""""""""""""""""""""""	0.764 26. 11043. 3024. 242. 2.73 132. 283. 0.450 0.200			
SPECIFIC DIAMETER * 02 BOOST TUR * 02 BOOST TUR * FFICIENCY (T/T) EFFICIENCY (T/S) SPEED (RPM) MEAN DIA (IN) EFF AREA (IN2) U/C (ACTUAL) MAX TIP SPEED STAGES GAMMA PRESS RATIO (T/T) SPECIFIC SPEED SPECIFIC SPEED SPECIFIC (T/S) HORSEPOMER MEAN DIA (IN) EFF AREA (IN2) U/C (ACTUAL) MAX TIP SPEED STAGES GAMMA PRESS RATIO (T/T)	2.20 ***********************************	1.91	# 02 BOOST P ####################################				
SPECIFIC DIAMETER OZ BOOST TUR SEFFICIENCY (T/T) EFFICIENCY (T/T) EFFICIENCY (T/S) SPEED (RPH) MEAN DIA (IN) EFF AREA (IN2) U/C (ACTUAL) MAX TIP SPEED STAGES GAMMA PRESS RATIO (T/T) PRESS RATIO (T/T) HORSEPOMER EXIT MACH NUMBER SPECIFIC SPEED SPECIFIC SPECIFIC SPEED SPECIFIC SPECIF	2.20 ***********************************	1.91	# 02 BOOST P ####################################	0.746 1043. 3026. 242. 2.73 132. 283. 0.450 0.200 0.746 652. 70496. 23430. 1737. 5983. 2.17 668. 281. 0.451			
SPECIFIC DIAMETER O2 BOOST TUR SPECIENCY (T/T) EFFICIENCY (T/T) EFFICIENCY (T/S) SPEED (RPM) MEAN DIA (IN) EFF AREA (IN2) U/C (ACTUAL) MAX TIP SPEED STAGES GAMMA PRESS RATIO (T/T) PRESS RATIO (T/S) HORSEPOWER EXIT MACH NUMBER SPECIFIC SPEED SPECIFIC DIAMETER O2 TURBINE = SPECIFICIENCY (T/S) SPEED (RPM) HORSEPOWER EFFICIENCY (T/S) SPEED (RPM) HORSEPOWER WANTIP SPEED STAGES GAMMA PRESS RATIO (T/T) PRESS RATIO (T/T) PRESS RATIO (T/T) PRESS RATIO (T/T) PRESS RATIO (T/S) EXIT MACH NUMBER	2.20 ***********************************	1.91	# 02 BOOST P ####################################	0.746 1045. 26. 11043. 3026. 242. 2.73 132. 283. 0.450 0.200			
SPECIFIC DIAMETER OZ BOOST TUR SEFFICIENCY (T/T) EFFICIENCY (T/T) EFFICIENCY (T/S) SPEED (RPH) MEAN DIA (IN) EFF AREA (IN2) U/C (ACTUAL) MAX TIP SPEED STAGES GAMMA PRESS RATIO (T/T) PRESS RATIO (T/T) HORSEPOMER EXIT MACH NUMBER SPECIFIC SPEED SPECIFIC SPECIFIC SPEED SPECIFIC SPECIF	2.20 ***********************************	1.91	# 02 BOOST P ####################################	0.746 11043. 3026. 242. 2.73 132. 283. 0.450 0.200 0.746 652. 70496. 23430. 1737. 5983. 2.17 668. 281. 0.451 0.150			

TABLE A-12. — SPLIT EXPANDER—50-PERCENT BYPASS/18-PERCENT ENHANCEMENT—FOUR-STAGE PUMP (CONTINUED)

- CHAMBER & NOZZLE HEAT TRANSFER -

** CHAMBER DESIGN **

CHAMBER MATL/TYPE	COPPER/TUBULAR
HDA (LEM/SEC). CHAMBER FLON	3.72
DPIN (PSID). INLET DELTA P	41.26
DP (PSID), CHAMBER DELTA	341.19
DPEX (PSID). EXIT DELTA P	127.02
DPT (PSID). TOTAL DELTA P	509.47
QTOT (BTU/S). HEAT TRANSFER	10904.99
DTCH (R). DELTA TEMPERATURE	780.57
UTTM. ULTIMATE TEMP HARGIN	100.51
PRYS. MAX STRESS RATIO	63.03
THOT. MAX HOT HALL TEMPERATE	RE 1655.64
UTTS. THROAT MAX TEMPERATURE	938.93
ASP. ASPECT RATIO	1.50
ZI (IN). CHAMBER LENGTH	15.50
ARI. CONTRACTION RATIO	2.40
TH. NUMBER OF TUBES	120.00

TABLE A-13. — SPLIT EXPANDER—50-PERCENT BYPASS/30-PERCENT ENHANCEMENT—FOUR-STAGE PUMP

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	2161.7
VAC ENGINE THRUST	25000.
TURBINE PHESSURE RATIO	2.300
TOTAL ENGINE FLOW RATE	52.07
DEL. VAC. ISP	480.1
THROAT AREA	5.67
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	84.94
ENGINE MIXTURE RATIO	6.00
ETA C.	0.993
CHAMBER COOLANT DP	1017.
CHAMBER COOLANT DT	1370.
NOZZLE/CHAMBER Q	18631

STATION B.P. INLET B.P. EXIT PUMP INLET 1ST STAGE EXIT 2ND STAGE EXIT JBV INLET JBV EXIT GROUNT INLET COOLANT INLET COOLANT INLET COOLANT EXIT TBV EXIT CO TRB INLET CO TRB INLET CO TRB INLET TBV EXIT CO TRB INLET CO TRB INLET CO TRB INLET CO TRB INLET CO TRB EXIT CO TRB INLET CO TRB INLET CO TRB TINLET CO TRB TINLET CO TRB TINLET CO TRB TINLET CO TRB TRB INLET CO TRB TRB IN CO TRB TRB OUT TRB TRB OUT TRB TRB OUT TRB TRB TRB OUT TRB TRB TRB OUT TRB	" FUEL	SYSTEM CO	MOITIONS .				
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY		
B.P. INLET	10.6	37.4	7.44	-107.5	4.37		
B.P. EXIT	100.7	30.5	7.44	-103.0	4.39		
TORP INCE!	100.7	38.5	7.44	-103.0	4.39		
2MD STAGE EXIT	1501.9	55.6	7.44	-22.7	4.50		
JBV INLET	2920.1	72.0	7.44	57.3	4.58		
JBV EXIT	2432.4	74.4	3.72	57.3 57.3	4.55 4.30		
SRD STAGE EXIT	5143.2	112.1	3.72	224.1	4.45		
PUMP EXIT	7281.6	147.2	3.72	\$82.2	4.44		
COOLANT INLET	7208.8	147.7	3.72	382.2	4.42		
COOLANT EXIT	6191.4	1518.0	3.72	5390.6	0.69		
TBV INLET	6129.5	1518.4	0.19	5390.6	0.69		
OS TOR INET	2546.4	1543.4	0.19	5390.6	0.30		
OZ TOB EVIT	6127.5	1518.4	3.53	5390.6	0.69		
OZ TRB DIFF	5378.6	1481./	3.55	5390.6 5242.6 5242.6	0.62		
1ST H2 TRR INLET	5225.1	1402.0	V. UUU	5242.6 5242.6	0.62		
2ND HZ TRB INLET	3815.4	1397.8	3.33 1 Et	4904.9	0.61		
HZ TRB EXIT	2733.0	1308.6	3.53	4562.9	0.48 0.37		
HZ TRB DIFFUSER	2651.3	1309.2	3.53	4562.9	0.36		
H2 BST TRB IN	2624.8	1309.	3.53	4562.9	0.36		
H2 BST TRB OUT	2602.6	1306.8	3.53	4553.4	0.36		
HZ BST TRB DIFF	2597.7	1306.9	3.53	4553.4 4553.4 4548.2	0.35		
OZ BST TRB IN	2571.7	1307.1	3.53	4553.4	0.35		
OZ BST TRB OUT	2559.9	1305.7	3.55	4548.2	0.35		
H2 TANK PRESS	4337.2	1305.7	3.53	4548.2 4590.4	0.35		
GOX HEAT EXCH IN	2544.4	1337.1	U.UU45	4590.4	0.0026		
GOX HEAT EXCH OUT	2533.6	1317.1	3.72	4590.4 4587.7	0.35 0.34		
MIXER HOT IN	2533.6	1317.1	\$.72	4587.7			
MIXER COLD IN	2432.4	76.4	3.72	4587.7 57.3 2320.3 2320.3 2320.3	4.30		
MIXER OUT	2407.0	672.9	7.44	2320.3	0.62		
FSOV INLET	2407.0	672.9	7.44	2320.3	0.62		
CHAMBED THE	2346.8	673.2	7.44	2320.3	0.61		
CHAMBER INJ	2323.3	673.4	7.44	2320.3	0.60		
G A IPCA	2161.7						
•	• OXYG	EN SYSTEM	CONDITIONS	•			
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY		
B.P. INLET	16.0	162.7	44.7	61.9	70.99		
BIND INDEX	135.2	165.3	44.7	62.3	70.84		
PIMP FYIT	135.2	165.3	44.7	62.3	70.84		
OZ TANK PRESS	3500.6	400 A	0.074	74.0	71.48		
OSOV INLET	3465.8	181.3	6.7	204.7	0.12		
OSOV EXIT	2426.0	185.5	6.7	74.0	69.85		
OCV INLET	3445.8	181.5	\$7.9	74.0	71.43		
OCV EXIT	2426.0	185.5	37.9	74.0	69.85		
CHAMBER INJ	2401.8	105.6	44.6	74.0	69.81		
CHARRER	2161.7						
STATION PRESS TEMP FLOM ENTHALPY DENSITY B.P. IMLET 16.0 162.7 44.7 61.9 70.99 B.P. EXIT 135.2 165.3 44.7 62.3 70.84 PUMP INLET 135.2 165.3 44.7 62.3 70.86 PUMP EXIT 3500.8 181.1 44.7 74.0 71.48 02 TANK PRESS 16.0 400.0 0.076 204.7 0.12 OSOV INLET 3465.8 181.3 6.7 74.0 71.43 OSOV SINT 2426.0 185.5 6.7 74.0 71.43 OCV INLET 3465.8 181.3 57.9 74.0 71.43 OCV INLET 3465.8 181.3 57.9 74.0 71.43 OCV EXIT 2426.0 185.5 37.9 74.0 69.85 CHAMBER INJ 2401.8 185.6 44.6 74.0 69.81 CHAMBER 1NJ 2401.8 185.6 44.6 74.0 69.81							
VALVE	DELTA P	AREA	FLOH	% BYPASS			
78A	429.	0.13	3.72	50.02			
TBV	3583.	9.01	0.19	5.00			
FSOV	60.	1.77	7.44				
OCA	1040.	0.21	44.63				
	• 1	NUCCTOR D	ATA -				
INJECTOR	DELTA P	AREA	FLON				
FUEL	DELTA P 162. 240.	1.13	7.44				
LOX	240.	1.13 0.52	44.63				

TABLE A-13. — SPLIT EXPANDER—50-PERCENT BYPASS/30-PERCENT ENHANCEMENT—FOUR-STAGE PUMP (CONTINUED)

" TURBOMACHINERY PERFO					
******************	*******				
* H2 BOOST TURBINE *	• H2 BOOST				
*************	********				
EFFICIENCY (T/T) 0.871	EFF1CIENCY	0.765			
EFFICIENCY (T/S) 0.673	HORSEPOHER	48.			
SPEED (RPM) 41324.	SPEED (RPM)	41524.			
MEAN DIA (IN) 2.12	S SPEED	3047.			
EFF AREA (IN2) 1.84	HEAD (FT) DIA. (IN)	2696.			
U/C (ACTUAL) 0.553 MAX TIP SPEED 474.					
MAX TIP SPEED 474. STAGES 1	TIP SPEED VOL. FLOW	439.			
GAMMA 1.41	HEAD COEF	761. 0.450			
PRESS RATIO (T/T) 1.01	FLON COEF	0.201			
PRESS RATIO (T/S) 1.01	· com ooc.	0.201			
HORSEPOHER 48.					
EXIT MACH NUMBER 0.06					
SPECIFIC SPEED 118.14					
SPECIFIC DIAMETER 0.73					

" H2 TURBINES "	90000000	-			
**************************************	= H2 PUH				
TURBINE 1 TURBINE 2			STAGE 2	STAGE E	STARF 4
********			*********		
EFFICIENCY (T/T) 0.770 0.781	EFFICIENCY	0.723			
EFFICIENCY (T/S) 0.699 0.701	HORSEPOHER	846.	843.	877.	833.
SPEED (RPM) 125000. 125000.	SPEED (RPM)	125000.	125000.	125000.	125000.
HORSEPONER 1689. 1710.	SS SPEED	11332.			
HEAN DIA. (IN) 2.68 2.68	S SPEED	1099.			
EFF AREA (1H2) 0.20 0.27	HEAD (FT)	45180.	44930.		
U/C (ACTUAL) 0.355 0.35 MAX TIP SPEED 1527. 1561.	DIA. (IN)	3.10			
STAGES 1 1	TIP SPEED	1693.			
GAPRIA 1.41 1.41	VOL. FLOM HEAD COEF	743. 0.507	729.		
PRESS RATIO (T/T) 1.37 1.40	FLOW COEF	0.117	0.504	0.532	0.511
PRESS RATIO (T/S) 1.42 1.45	DIAMETER RATIO				
EXIT MACH HUMBER 0.19 0.21	BEARING DH	3.00E+06			
	SHAFT DIAMETER	24.00			
SPECIFIC DIAMETER 2.18 1.92					
	_				
* 02 BOOST TURBINE *	********				
ananananananananan . ot boosi inkbist .	- 02 BOOST P				
EFFICIENCY (T/T) 0.870	EFFICIENCY				
EFFICIENCY (T/S) 0.801	HORSEPOHER	26.			
SPEED (RPH) 11044.	SPEED (RPH)				
MEAN DIA (IN) 5.83					
	S SPEED	3026.			
EFF AREA (IN2) 2.54		3026.			
U/C (ACTUAL) 0.553	HEAD (FT) DIA. (IN)	3026. 242. 2.73			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304.	HEAD (FT) DIA. (IN) TIP SPEED	3026. 242. 2.73 132.			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES I	HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM	\$026. 242. 2.78 132. 283.			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES 1 GAMMA 1.41	HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOH HEAD COEF	\$026. 242. 2.73 132. 283. 0.450			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES I	HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM	\$026. 242. 2.78 132. 283.			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES 1 GAMMA 1.41 PRESS RATIO (T/T) 1.00	HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOH HEAD COEF	\$026. 242. 2.73 132. 283. 0.450			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES 1 GAMMA 1.41 PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.01 HORSEPONER 26. EXIT MACH NUMBER 0.02	HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOH HEAD COEF	\$026. 242. 2.73 132. 283. 0.450			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES 1 GAMMA 1.41 PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.01 MORSEPOMER 26. EXIT MACH NUMBER 0.02 SPECIFIC SPEED 57.47	HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOH HEAD COEF	\$026. 242. 2.73 132. 283. 0.450			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES 1 GAMMA 1.41 PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.01 HORSEPONER 26. EXIT MACH NUMBER 0.02	HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOH HEAD COEF	\$026. 242. 2.73 132. 283. 0.450			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES 1 GAMMA 1.41 PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.01 MORSEPONER 26. EXIT MACH NUMBER 0.02 SPECIFIC SPEED 57.47 SPECIFIC DIAMETER 1.42	MEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM MEAD COEF FLOM COEF	3026. 242. 2.73 132. 283. 0.450 0.200			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES 1 GAMMA 1.41 PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.01 MORSEPONER 26. EXIT MACH NUMBER 0.02 SPECIFIC SPEED 57.47 SPECIFIC DIAMETER 1.42	HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF	3026. 242. 247. 132. 283. 0.450 0.200			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES 1 GAMMA 1.41 PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.01 MORSEPOMER 26. EXIT MACH NUMBER 0.02 SPECIFIC SPEED 57.47 SPECIFIC DIAMETER 1.42	HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF #PROFESSED **********************************	3026. 242. 2.73 132. 283. 0.450 0.200			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES 1 GAMMA 1.41 PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.01 HORSEPONER 26. EXIT MACH NUMBER 0.02 SPECIFIC SPEED 57.47 SPECIFIC DIAMETER 1.42	MEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM MEAD COEF FLOM COEF ###################################	\$026. 242. 2.73 132. 283. 0.450 0.200			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES 1 GAMMA 1.41 PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.01 MORSEPOMER 26. EXIT MACH NUMBER 0.02 SPECIFIC SPEED 57.47 SPECIFIC DIAMETER 1.42	HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF #PROFESSED **********************************	3026. 242. 2.73 132. 283. 0.450 0.200			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES 1 GAMMA 1.41 PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.01 HORSEPONER 24. EXIT MACH NUMBER 0.02 SPECIFIC SPEED 57.47 SPECIFIC DIAMETER 1.42 ***********************************	MEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM MEAD COEF FLOM COEF	3026. 242. 243. 132. 283. 0.450 0.200			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES 1 GAMMA 1.41 PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.01 MORSEPONER 26. EXIT MACH NUMBER 0.02 SPECIFIC SPEED 57.47 SPECIFIC DIAMETER 1.42 ***********************************	HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF ###################################	3026. 242. 242. 273 132. 283. 0.450 0.200			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES 1 GAMMA 1.41 PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.01 HORSEPONER 26. EXIT MACH NUMBER 0.02 SPECIFIC SPEED 57.47 SPECIFIC DIAMETER 1.42 ***********************************	HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF ###################################	3026. 242. 243. 132. 283. 0.450 0.200			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES 1 GAMMA 1.41 PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.01 MORSEPOMER 26. EXIT MACH MURBER 0.02 SPECIFIC SPEED 57.47 SPECIFIC DIAMETER 1.42 ***********************************	HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF # 02 PUMP ###################################	3026. 242. 273 132. 283. 0.450 0.200			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES 1 GAMMA 1.41 PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.01 MORSEPOMER 26. EXIT MACH NUMBER 0.02 SPECIFIC SPEED 57.47 SPECIFIC DIAMETER 1.42 ***********************************	MEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM MEAD COEF FLOM COEF ###################################	3026. 242. 242. 273 132. 283. 0.450 0.200			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES 1 GAMMA 1.41 PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.01 MORSEPONER 26. EXIT MACH NUMBER 0.02 SPECIFIC SPEED 57.47 SPECIFIC SPEED 57.47 SPECIFIC DIAMETER 1.42 ***********************************	HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM MEAD COEF FLOM COEF "PRINCED OF THE TOTAL	3026. 242. 273 132. 283. 0.450 0.200			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES 1 GAMMA 1.41 PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.01 MORSEPOMER 26. EXIT MACH MURBER 0.02 SPECIFIC SPEED 57.47 SPECIFIC SPEED 57.47 SPECIFIC DIAMETER 1.42 ***********************************	HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF ###################################	3026. 242. 273 132. 283. 0.450 0.200			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES 1 GAMMA 1.41 PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.01 MORSEPOMER 26. EXIT MACH MURBER 0.02 SPECIFIC SPEED 57.47 SPECIFIC SPEED 57.47 SPECIFIC DIAMETER 1.42 """""""""""""""""""""""""""""""""""	HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM MEAD COEF FLOM COEF "PRINCED OF THE TOTAL	3026. 242. 273 132. 283. 0.450 0.200			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES 1 GAMMA 1.41 PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.01 HORSEPONER 26. EXIT MACH NUMBER 0.02 SPECIFIC SPEED 57.47 SPECIFIC DIAMETER 1.42 ***********************************	HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF """""""""""""""""""""""""""""""""""	3026. 242. 242. 283. 0.450 0.200 0.200			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES 1 GAMMA 1.41 PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.01 MORSEPOMER 26. EXIT MACH MURBER 0.02 SPECIFIC SPEED 57.47 SPECIFIC DIAMETER 1.42 ***********************************	HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF FLOM COEF ###################################	3026. 242. 242. 273 132. 283. 0.450 0.200 0.200 0.745 740. 73452. 24472. 1652. 6777. 2.19 704. 281. 0.440 0.146 0.677			
U/C (ACTUAL) 0.553 MAX TIP SPEED 304. STAGES 1 GAMMA 1.41 PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.01 MORSEPOMER 26. EXIT MACH NUMBER 0.02 SPECIFIC SPEED 57.47 SPECIFIC SPEED 57.47 SPECIFIC DIAMETER 1.42 ***********************************	HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOM HEAD COEF FLOM COEF ###################################	0.745 740. 736. 745. 0.450 0.200			

Report Documentation Page					
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No			
NASA CR-187206					
4. Title and Subtitle		5. Report Date			
TUBULAR COPPER THRUST CHAMB	ER DESIGN STUDY	May 1992			
Final Report		6. Performing Organizatio	n Code		
7. Author(s)		8. Performing Organization	n Report No.		
A.I. Masters, D.E. Galler, et. al.		FR-21385			
•		10. Work Unit No.			
		593-12-21			
9. Performing Organization Name and Address		11. Contract or Grant No.			
Pratt & Whitney		NAS3-23858			
P.O. Box 109600 West Palm Beach, FL 33410-9600		13. Type of Report and Po Final Report Oct. 1989 - June			
12. Sponsoring Agency Name and Address		14. Sponsoring Agency Co	ode		
National Aeronautics and Space Admin Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135-3191	istration				
15. Supplementary Notes					
Task Order Manager: John Kazaroff					
16. Abstract The use of copper tubular thrust chambers is particularly important in a high-performance expander cycle space engine. High performance requires high combustion chamber pressure. Expander cycle engines are limited in chamber pressure by the amount of regenerative heat available to drive the turbomachinery. Tubular chambers have more surface area than flat wall chambers (milled-channel construction), and this extra surface area provides enhanced heat transfer for additional energy to power the cycle. The Tubular Copper Thrust Chamber Design Study was divided into two primary technical activities: (1) a Thermal Analysis and Sensitivity Study and (2) a Preliminary Design of a selected thrust chamber configuration. The thermal analysis consisted of a statistical optimization to determine the optimum tube geometry, tube booking, thrust chamber geometry, and cooling routing to achieve the maximum upper limit chamber pressure for a 25,000-pound thrust engine. Two cycle types, a split expander cycle and full expander cycle with a regenerator, were considered. The goal of the preliminary design was to define a tubular thrust chamber that would demonstrate the inherent advantages of copper tube construction in full-scale hardware. The Advanced Expander Test Bed (AETB) was selected as the most appropriate vehicle for the demonstration. The AETB is being designed with a 25-percent uprated design point relative to its normal operating point. Tine design point is 25,000 lb thrust at 1500 psia chamber pressure, and the normal operating point is 20,000 lb thrust at 1500 psia chamber pressure, and the normal operating point is 20,000 lb thrust at 1200 psia. The thrust chamber has a contraction ratio of 3 to 1 and a conical exhaust nozzle expanding to an area ratio of 2 to 1. A heat transfer enhancement of 18 percent is predicted to increase achievable chamber pressure to 1755 psia (or 11 percent) for the AETB with its current three-stage fuel pump configuration. The preliminary design effort produced a layout drawi					
17. Key Words (Suggested by Author(s))		18. Distribution Statement			
Rocket Engine Thrust Chamber Copper Tubes Electroformed Jacket AETB		General Release			
19. Security Classif. (of this report)	20. Security Classif, (of this page)	21. No. of Pages	22. Price*		
Linclassified	Linclassified	103			